Chapter 6: Techniques of Integration
Section 6.3: Trig Substitution
Example 6.3.6
Evaluate the indefinite integral ∫x24−9 x2ⅆx.
Solution
Mathematical Solution
The substitution x=23sinθ means dx=23cosθ dθ, and turns fx into 2 cosθ. From Figure 6.3.1, cosθ=124−9 x2. Hence, the evaluation of the given integral proceeds as follows.
∫x24−9 x2ⅆx
=∫23sinθ22 cosθ23cosθ dθ
= 1627∫sin2θcos2θ ⅆθ
=427∫sin22 θ ⅆθ
=427∫121−cos4 θ ⅆθ
=227θ−sin4 θ4
=227θ−144 sinθcosθ2 cos2θ−1
=227θ−sinθcosθ2 cos2θ−1
=227arcsin32x−32x124−9 x22⋅4−9 x24−1
=227 arcsin32x−x362−9 x24−9 x2
Note the use of the trig identity sin4 θ=4 sinθcosθ2 cos2θ−1.
Maple Solution
Evaluate the given integral
Control-drag the integral.
Context Panel: Evaluate and Display Inline
∫x24−9 x2ⅆx = −136⁢x⁢−9⁢x2+43/2+118⁢x⁢−9⁢x2+4+227⁢arcsin⁡32⁢x
A stepwise solution that uses top-level commands except for one application of the Change command from the IntegrationTools package:
Initialization
Install the IntegrationTools package.
withIntegrationTools:
Let Q be the name of the given integral.
Q≔∫x24−9 x2ⅆx:
Change variables as per Table 6.3.1
Use the Change command to apply the change of variables x=23sinθ.
q1≔ChangeQ,x=23sinθ
∫827⁢sin⁡θ2⁢−4⁢sin⁡θ2+4⁢cos⁡θⅆθ
Simplify the radical to 2 cosθ. Note the restriction imposed on θ.
q2≔simplifyq1 assuming θ∷RealRange−π2,π2
1627⁢∫sin⁡θ2⁢cos⁡θ2ⅆθ
Apply the double-angle trig identity for sin2 θ via the simplify command with the identity as a side relation.
q3≔simplifyq2,2 sinθcosθ=sin2 θ
1627⁢∫14⁢sin⁡2⁢θ2ⅆθ
Apply the half-angle trig identity for sin22 θ.
q4≔evalq3,sin22 θ=1−cos4 θ/2
1627⁢∫18−18⁢cos⁡4⁢θⅆθ
Split the integral with the expand command, while preventing Maple from expanding cos4 θ.
q5≔expandq4,4 θ
227⁢∫1ⅆθ−227⁢∫cos⁡4⁢θⅆθ
Use the value command to evaluate what are now two separate but simple integrals.
q6≔valueq5
227⁢θ−154⁢sin⁡4⁢θ
Apply the expand command to express sin4 θ in terms of sinθ and cosθ. (This is a standard trig identity.)
q7≔expandq6
227⁢θ−427⁢sin⁡θ⁢cos⁡θ3+227⁢sin⁡θ⁢cos⁡θ
Revert the change of variables by applying the substitution θ=arcsin3 x/2.
evalq7,θ=arcsin32x
−136⁢x⁢−9⁢x2+43/2+118⁢x⁢−9⁢x2+4+227⁢arcsin⁡32⁢x
Table 6.3.6(a) displays the annotated stepwise solution provided by the tutor when the Constant, Constant Multiple, and Sum rules are taken as Understood Rules.
∫x2⁢−9⁢x2+4ⅆx=16⁢∫sin⁡u2⁢cos⁡u2ⅆu27change,x=2⁢sin⁡u3,u=−4⁢∫1+cos⁡2⁢u⁢−1+cos⁡2⁢uⅆu27rewrite,cos⁡u2=cos⁡2⁢u2+12,sin⁡u2=12−cos⁡2⁢u2=−4⁢∫cos⁡2⁢u2ⅆu27+4⁢u27rewrite,1+cos⁡2⁢u⁢−1+cos⁡2⁢u=cos⁡2⁢u2−1=2⁢u27−2⁢∫cos⁡4⁢uⅆu27rewrite,cos⁡2⁢u2=12+cos⁡4⁢u2
Table 6.3.6(a) First steps of an annotated stepwise solution via Integration Methods tutor
Note the trig identities Maple imposes on sin2ucos2u to obtain a multiple of cos22 u−1 instead of a multiple of sin22 θ. The integration of cos4 θ is straightforward, so Table 6.3.6(a) concludes at that step.
Note that an annotated stepwise solution is available via the Context Panel with the "All Solution Steps" option.
The rules of integration can also be applied via the Context Panel, as per the figure to the right.
<< Previous Example Section 6.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document