Chapter 6: Techniques of Integration
Section 6.2: Trigonometric Integrals
Essentials
Table 6.2.1 lists two reduction formulas for integrals of integer-powers of products of sines and cosines. These formulas can be established by parts integration followed by trigonometric and algebraic manipulations.
∫cosmxsinnx ⅆx = cosm−1xsinn+1xm+n+m−1m+n ∫cosm−2xsinnx ⅆx
n≥0 m≥2
∫cosmxsinnx ⅆx = −cosm+1xsinn−1xm+n+n−1m+n ∫cosmxsinn−2x ⅆx
m≥0
n≥2
Table 6.2.1 Reduction formulas for integrals of products of powers of sines and cosines
If one of m and n is odd (2 k+1), the integral on the left in Table 6.2.1 can be evaluated by the alternative strategy detailed in Table 6.2.2.
∫cosmxsin2 k+1x ⅆx
= ∫cosmxsin2 kxsinx ⅆx
= ∫cosmx1−cos2xksinx ⅆx
{u=cosxdu=−sinxdx
= −∫um1−u2k ⅆu
∫cos2 k+1xsinnx ⅆx
= ∫cos2 kxcosxsinnx ⅆx
= ∫1−sin2xkcosxsinnx ⅆx
{u=sinxdu=cosxdx
= ∫1−u2kun ⅆu
Table 6.2.2 Alternate approach to the reduction formulas in Table 6.2.1
If n=0 in the first formula of Table 6.2.1, or m=0 in the second, the special cases listed in Table 6.2.3 result.
∫cosmx ⅆx=1mcosm−1xsinx+m−1m ∫cosm−2x ⅆx
∫sinnx ⅆx = −1ncosxsinn−1x+n−1n ∫sinn−2x ⅆx
Table 6.2.3 Special cases of the reduction formulas in Table 6.2.1
If m=n=2 in Table 6.2.3, the special cases listed in Table 6.2.4 result.
∫cos2x ⅆx = 12cosxsinx+∫1 ⅆx = 12x+cosxsinx
∫sin2x ⅆx = 12−cosxsinx+∫1 ⅆx = 12x−cosxsinx
Table 6.2.4 Special cases m=n=2 in Table 6.2.3
The alternative to the results in Table 6.2.4 is to remember (and apply) the trig identities embodied in Table 6.2.5, namely, cos2x=1+cos2 x/2,sin2x=1−cos2 x/2, and sin2 x=2 sinxcosx.
∫cos2x ⅆx
= ∫121+cos2 x ⅆx
=12x+12sin2 x
=12x+sinxcosx
∫sin2x ⅆx
= ∫121−cos2 x ⅆx
=12x−12sin2 x
=12x−sinxcosx
Table 6.2.5 The results in Table 6.2.4 established by application of trig identities
Table 6.2.6 lists integration formulas for products of sines and cosines whose arguments are integer multiples of x.
∫sinm xsinn x dx
=sinm−n x2m−n−sinm+n x2m+n
∫cosm xcosn x dx
=sinm−n x2m−n+sinm+n x2m+n
∫sinm xcosn x dx
=−cosm−n x2m−n−cosm+n x2m+n
Table 6.2.6 Integral formulas for products of sines and cosines
The formulas in Table 6.2.6 follow from the application of the basic trig identities listed in Table 6.2.7.
sinxsiny
=12cosx−y−cosx+y
cosxcosy
=12cosx−y+cosx+y
sinxcosy
=12sinx−y+sinx+y
Table 6.2.7 Trig identities for the integrals in Table 6.2.6
Integrals of the form ∫tanmxsecnx ⅆx, where either n is even (2 k) or m is odd (2 k+1), yield to a strategy similar to that in Table 6.2.2. Table 6.2.8 lists these results.
∫tanmxsec2 kx ⅆx
= ∫tanmxsec2xk−1sec2x ⅆx
= ∫tanmx1+tan2xk−1sec2x ⅆx
{u=tanxdu=sec2xdx
= ∫um1+u2k−1du
∫tan2 k+1xsecnx ⅆx
= ∫tan2xksecn−1xsecxtanx ⅆx
= ∫sec2x−1ksecn−1xsecxtanx ⅆx
{u=secxdu=secxtanxdx
= ∫u2−1kun−1 ⅆu
Table 6.2.8 Special cases of the integral ∫tanmxsecnx ⅆx
Note the related reduction formula
∫sec2 k+1x dx=12 ksec2 k−1xtanx+2 k−1∫sec2 k−1x dx
that is derived in Example 6.2.9.
Integrals of the form ∫cotmxcscnx dx, where either n is even (2 k) or m is odd (2 k+1), yield to a strategy similar to that in Table 6.2.8. Table 6.2.9 lists these results.
∫cotmxcsc2 kx dx
= ∫cotmxcsc2xk−1csc2x dx
= ∫cotmx1+cot2xk−1csc2x dx
{u=cotxdu=csc2xdx
∫cot2 k+1xcscnx dx
= ∫cot2xkcscn−1xcscxcotx dx
= ∫csc2x−1kcscn−1xcscxcotx dx
{u=cscxdu=−cscxcotxdx
= ∫u2−1kun−1du
Table 6.2.9 Special cases of the integral ∫cotmxcscnx dx
Table 3.10.1 lists antiderivatives for tanx and cotx; Table 6.2.10 lists and deduces antiderivatives for secx and cscx.
∫secx dx
= ∫secxsecx+tanxsecx+tanx dx
= ∫sec2x+secxtanxsecx+tanx dx
{u=secx+tanxdu=secxtanx+sec2xdx
= ∫duu
=ln(u)
=ln(secx+tanx)
∫cscx ⅆx
= ∫cscxcscx+cotxcscx+cosx ⅆx
= ∫csc2x+cscxcotxcscx+cotx ⅆx
{u=cscx+cotxdu=−cscxcotx+csc2xdx
= −∫duu
= −ln(u)
= −ln(cscx+cotx) = lncscx−cotx
Table 6.2.10 Antiderivatives for secx and cscx
Examples
Example 6.2.1
Evaluate the indefinite integral ∫cos3xsin2x ⅆx.
Example 6.2.2
Evaluate the indefinite integral ∫cos4x ⅆx.
Example 6.2.3
Evaluate the indefinite integral ∫tan4xsec6x ⅆx.
Example 6.2.4
Evaluate the indefinite integral ∫tan3x ⅆx.
Example 6.2.5
Evaluate the indefinite integral ∫sec3x ⅆx.
Example 6.2.6
Evaluate the indefinite integral ∫sin7 xsin6 x ⅆx.
Example 6.2.7
Derive the first reduction formula in Table 6.2.1.
Example 6.2.8
Derive the second reduction formula in Table 6.2.1.
Example 6.2.9
Derive the reduction formula ∫sec2 k+1x dx=12 ksec2 k−1xtanx+2 k−1∫sec2 k−1x dx.
Example 6.2.10
Evaluate the indefinite integral ∫csc3x ⅆx.
<< Previous Section Table of Contents Next Section >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document