Chapter 1: Vectors, Lines and Planes
Section 1.5: Applications of Vector Products
Example 1.5.10
Using the formulas in Table 1.5.1 for reciprocal vectors, obtain V1,V2,V3, the set of vectors reciprocal to the vectors U1=A, U2=B, U3=C, where A, B, and C are given in Example 1.5.1.
Solution
Mathematical Solution
Begin by computing the box product
λ=U1U2U3=U1·U2×U3 = |3−2425−4576| = 194
Next, obtain the following three cross products.
U2×U3= |ijk25−4576| = 58−32−11
U3×U1=|ijk5763−24| = 40−2−31
U1×U2=|ijk3−2425−4| = −122019
Finally, divide each of the three cross products by λ.
V1=1194 58−32−11
V2=119440−2−31
V3=1194−122019
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Enter the vectors U1,U2,U3
Enter A as per Table 1.1.1.
Context Panel: Assign to a Name≻U[1]
3,−2,4→assign to a nameU1
Enter B as per Table 1.1.1.
Context Panel: Assign to a Name≻U[2]
2,5,−4→assign to a nameU2
Enter C as per Table 1.1.1.
Context Panel: Assign to a Name≻U[3]
5,7,6→assign to a nameU3
Compute λ=U1U2U3
Write a sequence of the names of the three vectors. Context Panel: Evaluate and Display Inline
Context Panel: Student Multivariate Calculus≻Triple Scalar Product
Context Panel: Assign to a Name≻lambda
U1,U2,U3 = →scalar triple product194→assign to a nameλ
Obtain the reciprocal vectors as per the formulas in Table 1.5.1
Common Symbols palette: Cross-product operator
Context Panel: Assign Name
V1=U2×U3λ→assign
V2=U3×U1λ→assign
V3=U1×U2λ→assign
Display the reciprocal vectors
V1,V2,V3
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Define the vectors U1, U2, and U3.
U1,U2,U3≔3,−2,4,2,5,−4,5,7,6:
Apply the BoxProduct command.
λ≔BoxProductU1,U2,U3:
Apply the CrossProduct command to obtain the reciprocal vectors as per the formulas in Table 1.5.1
V1≔CrossProductU2,U3/λ:V2≔CrossProductU3,U1/λ:V3≔CrossProductU1,U2/λ:
<< Previous Example Section 1.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document