Chapter 1: Vectors, Lines and Planes
Section 1.5: Applications of Vector Products
Example 1.5.12
Solve the appropriate set of four equations in four unknowns to find V1,V2, the set of vectors reciprocal to U1=2 i−3 j, U2=3 i+4 j.
Solution
Mathematical Solution
Taking the Vk,k=1,2, as the vectors
a1a2,b1b2
the equations Ui·Vj=δij thereby generated are listed in Table 1.5.12(a). The solution of these equations is listed in Table 1.5.12(b). The resulting vectors Vk are listed in Table 1.5.12(c).
U1·V1=δ11
2⁢a1−3 a2=1
U1·V2=δ12
2⁢b1−3 b2=0
U2·V1=δ21
3⁢a1+4⁢a2=0
U2·V2=δ22
3⁢b1+4⁢b2=1
Table 1.5.12(a) The equations Ui·Vj=δij
a1=4/17
a2=−3/17
b1=3/17
b2=2/17
Table 1.5.12(b) Solution of equations in Table 1.5.12(a)
V1=117 4−3
V2=117 32
Table 1.5.12(c) Reciprocal vectors
Maple Solution - Interactive
Define the function δ⁡i,j={1i=j0i≠j
Expression palette: Piecewise template
Context Panel: Assign Function
δi,j=1i=j0i≠j→assign as functionδ
Define the vectors Uk and Vk, k=1,2
Context Panel: Assign Name U is the list of vectors U1 and U2.
U=2,−3,3,4→assign
Context Panel: Assign Name V is the list of vectors V1, and V2.
V=a1,a2,b1,b2→assign
Form the set of equations Ui·Vj=δij
Write Ui·Vj=δi,j and press the Enter key.
Context Panel: Sequence≻i≻ (See Figure 1.5.12(a).)
Context Panel: Conversions≻To List
Context Panel: Sequence≻j≻(See Figure 1.5.12(a).)
Context Panel: Join
Context Panel: Solve≻Solve
Context Panel: Assign to a Name≻S
Figure 1.5.12(a) Sequence dialog
Ui·Vj=δi,j
2−3,34i·a1a2,b1b2j=1i=j0i≠j
→sequence w.r.t. i
2−3·a1a2,b1b2j=11=j01≠j,34·a1a2,b1b2j=12=j02≠j
→to list
→sequence w.r.t. j
2⁢a1−3⁢a2=1,3⁢a1+4⁢a2=0,2⁢b1−3⁢b2=0,3⁢b1+4⁢b2=1
→list join
→solve
a1=417,a2=−317,b1=317,b2=217
→assign to a name
S
Evaluate each Vk at the solution S
Expression palette: Evaluation template
Context Panel: Evaluate and Display Inline
V1x=a|f(x)S = 417−317
V2x=a|f(x)S = 317217
The Context Panel option "Sequence" applies the seq command to generate a sequence of objects of similar structure. It cannot again be applied a second time to the resulting sequence of objects. Hence, the original sequence must be converted to a list, whereupon the Sequence option can again be applied. This results in a sequence of lists that can be combined into a single list via the Join option .
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Use the piecewise command to define the function
δ⁡i,j={1i=j0i≠j
δ≔i,j→piecewisei=j,1,i≠j,0:
Let U be the list of vectors U1 and U2.
U≔2,−3,3,4:
Let V be the list of vectors V1, and V2.
V≔a1,a2,b1,b2:
Use the seq command to generate the equations Ui·Vj=δij.
Apply the DotProduct command and assign the sequence of equations to the name q.
q≔seqseqDotProductUi,Vj=δi,j,i=1..2,j=1..2
q≔2⁢a1−3⁢a2=1,3⁢a1+4⁢a2=0,2⁢b1−3⁢b2=0,3⁢b1+4⁢b2=1
Apply the solve command to the set of equations Ui·Vj=δij
Assign the solution to the name S.
S≔solveq
S≔a1=417,a2=−317,b1=317,b2=217
Use the eval command to evaluate each vector in the list V with the values in the set S.
evalV1,S = 417−317
evalV2,S = 317217
<< Previous Example Section 1.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document