Chapter 1: Vectors, Lines and Planes
Section 1.5: Applications of Vector Products
Example 1.5.2
For the vectors A, B, and C of Example 1.5.1, and D=4 i+3 j−2 k,
Verify the identity A×B×C×D=ACDB−BCDA.
Verify the identity A×B×C×D=ABDC−ABCD.
Solution
Maple Solution - Interactive
Initialization
Make D, the differentiation operator, useable as a variable name
Invoke the local command. Press the Enter key.
local D≔D:
D
Define the vectors A, B, C, and D
Enter A as per Table 1.1.1.
Context Panel: Assign to a Name≻A
3,−2,4→assign to a nameA
Enter B as per Table 1.1.1.
Context Panel: Assign to a Name≻B
2,5,−4→assign to a nameB
Enter C as per Table 1.1.1.
Context Panel: Assign to a Name≻C
5,7,6→assign to a nameC
Enter D as per Table 1.1.1.
Context Panel: Assign to a Name≻D
4,3,−2→assign to a nameD
Part (a)
Evaluate the left-hand side of the identity
Common Symbols palette: Cross-product operator
Context Panel: Evaluate and Display Inline
A×B×C×D = −906−764232
Evaluate the right-hand side of the identity
Common Symbols palette: Cross-product and dot-product operators
A·C×D⋅B−B·C×D⋅A = −906−764232
Part (b)
A·B×D⋅C−A·B×C⋅D = −906−764232
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Define the vectors A, B, C, and D. D must still be declared local, as per the previous section.
A,B,C,D≔3,−2,4,2,5,−4,5,7,6,4,3,−2:
CrossProductCrossProductA,B,CrossProductC,D = −906−764232
BoxProductA,C,D⋅B−BoxProductB,C,D⋅A = −906−764232
Alternatively, use first principles to evaluate the right-hand side
DotProductA,CrossProductC,D⋅B−DotProductB,CrossProductC,D⋅A = −906−764232
BoxProductA,B,D⋅C−BoxProductA,B,C⋅D = −906−764232
DotProductA,CrossProductB,D⋅C−DotProductA,CrossProductB,C⋅D = −906−764232
<< Previous Example Section 1.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document