Chapter 2: Space Curves
Section 2.3: Tangent Vectors
Example 2.3.7
Given the plane curve C defined by yx=1−x21+x2,
Obtain R⁡p, the radius-vector form of the curve, by the parametrization x=p,y=y⁡p.
Obtain R′p,ρp and Tp, where ρ=R′ and T=R′/ρ.
Graph C and the vectors R1 and T1.
Graph ρp,p∈0,3, and determine the point x,y at which ρ is a maximum in this interval.
Solution
Mathematical Solution
If R=p1−p21+p2, then R′=1−4⁢pp2+12, ρ=∥R′∥ = p8+4⁢p6+6⁢p4+20⁢p2+1p2+12,
T=p2+12p8+4⁢p6+6⁢p4+20⁢p2+1−4⁢pp8+4⁢p6+6⁢p4+20⁢p2+1, R1=10, and T1=121−1.
Figure 2.3.7(a) displays a graph of the curve C, the vector R1 (green arrow), and the vector T1 (black arrow). Figure 2.3.7(b) shows a graph of ρ, from which is inferred the existence of a single maximum in the interval 0≤p≤3.
use plots, Student:-VectorCalculus in module() local p1,p2,p3,R,T,R1,T1; R:=<p,(-p^2+1)/(p^2+1)>; T:=TangentVector(R,p,normalized); R1:=eval(R,p=1); T1:=RootedVector(root=[1,0],<1,-1>/sqrt(2)); p1:=SpaceCurve(R,p=0..3,caption=""); p2:=PlotVector([R1,T1],color=[green,black]); p3:=display(p1,p2,scaling=constrained,labels=[x,y],tickmarks=[3,3],view =[0..3,-1..1]); print(p3); end module: end use:
Figure 2.3.7(a) C; R1 (green), T1 (black)
Figure 2.3.7(b) Graph of ρ
The critical values for ρ are found by solving the equation
ρ′=16⁢p⁢1−3 p2p2+13⁢p8+4⁢p6+6⁢p4+20⁢p2+1=0
and obtaining ρ^=1/3, in which case R1/3 determines the point 1/3,1/2.
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-MultivariateCalculus
Part (a)
Write R=… as per Table 1.1.1.
Context Panel: Assign Name
R=p,1−p2/1+p2→assign
Part (b)
Calculus palette: Differentiation operator
Context Panel: Evaluate and Display Inline
Context Panel: Simplify≻Simplify
Context Panel: Assign to a Name≻dR
ⅆⅆ p R = 1−2⁢pp2+1−2⁢−p2+1⁢pp2+12= simplify 1−4⁢pp2+12→assign to a namedR
Keyboard the norm bars.
Context Panel: Simplify≻Assuming Positive
Context Panel: Assign to a Name≻rho
dR = 1+16⁢p2p2+14→assuming positivep8+4⁢p6+6⁢p4+20⁢p2+1p2+12→assign to a nameρ
Context Panel: Assign to a Name≻T
dRρ = p2+12p8+4⁢p6+6⁢p4+20⁢p2+1−4⁢pp8+4⁢p6+6⁢p4+20⁢p2+1→assign to a nameT
Part (c)
For R1 and T1: Expression palette: Evaluation template Context Panel: Evaluate and Display Inline Context Panel: Plots≻Arrow from origin (for R1) and Arrow from point≻1,0 (for T1)
For C: Write R Context Panel: Evaluate and Display Inline Context Panel: Student Vector Calculus≻Conversions≻To List Context Panel: Plots≻Plot Builder
Copy and paste the arrows onto the graph of C
Rx=a|f(x)p=1 = 10→plot arrow
Tx=a|f(x)p=1 = 328−328→plot arrow
R = p−p2+1p2+1→to listp,−p2+1p2+1→
Part (d)
Write ρ. Context Panel: Plots≻Plot Builder
ρ = p8+4⁢p6+6⁢p4+20⁢p2+1p2+12→
Write ρ and press the Enter key.
Context Panel: Differentiate≻With Respect To≻ρ
Context Panel: Conversions≻Equate to 0
Context Panel: Solve≻Solve
ρ
p8+4⁢p6+6⁢p4+20⁢p2+1p2+12
→differentiate w.r.t. p
−4⁢p8+4⁢p6+6⁢p4+20⁢p2+1⁢pp2+13+8⁢p7+24⁢p5+24⁢p3+40⁢p2⁢p2+12⁢p8+4⁢p6+6⁢p4+20⁢p2+1
→equate to 0
−4⁢p8+4⁢p6+6⁢p4+20⁢p2+1⁢pp2+13+8⁢p7+24⁢p5+24⁢p3+40⁢p2⁢p2+12⁢p8+4⁢p6+6⁢p4+20⁢p2+1=0
→solve
p=0,p=33,p=−33
Expression palette: Evaluation template
Context Panel: Student Vector Calculus≻ Conversions≻To List
Rx=a|f(x)p=1/3 = 3312→to list33,12
Maple Solution - Coded
Install the Student VectorCalculus package.
Apply the BasisFormat command.
withStudent:-VectorCalculus:BasisFormatfalse:
Define C as the position vector R.
R≔p,1−p2/1+p2:
Apply the diff and simplify commands. Note that the name R′ is an Atomic Identifier.
R′≔simplifydiffR,p
R′≔1−4⁢pp2+12
Apply the Norm and simplify commands. Note that the name R′ is an Atomic Identifier.
ρ≔simplifyNormR′ assuming p>0
ρ≔p8+4⁢p6+6⁢p4+20⁢p2+1p2+12
The name R′ is an Atomic Identifier.
T≔R′/ρ
T≔p2+12p8+4⁢p6+6⁢p4+20⁢p2+1−4⁢pp8+4⁢p6+6⁢p4+20⁢p2+1
Use the eval command to make the substitution p=1 in each of R and T.
Use the ConvertVector command to convert T1 to a rooted vector.
R1≔evalR,p=1:temp≔evalT,p=1:T1≔ConvertVectortemp,rooted,1,0:R1,T1
To graph C , use the SpaceCurve command.
To graph the vectors R1 and T1, use the PlotVector command.
Use the display command (plots package) to join the graph of C with the graph of the vectors.
q1≔SpaceCurveR,p=0..3,caption=:q2≔PlotVectorR1,T1,color=green,black:plots:-displayq1,q2,scaling=constrained,labels=x,y,tickmarks=3,3,view=0..3,−1..1
Apply the solve and diff commands to obtain the critical values for ρ.
solvediffρ,p=0
0,33,−33
Apply the eval command to R to obtain the extreme point as a vector.
Apply the convert command (with option list) to change the column vector to a list.
convertevalR,p=1/3,list
33,12
<< Previous Example Section 2.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document