Chapter 2: Space Curves
Section 2.5: Principal Normal
Example 2.5.10
Obtain and graph the evolute of the ellipse x=2 cosp,y=sinp,p∈0,2 π.
Solution
Mathematical Solution
Figure 2.5.10(a) contains the graphs of the ellipse (red) and its evolute (green).
If R=2 cos(p)sin(p) is the position vector description of the ellipse, then its radius of curvature and principal normal are respectively
r=4−3 cos2p3/2/2
and
N=−14−3 cos2pcos(p)2 sin(p)
use plots, Student:-VectorCalculus in module() local p1,p2,p3,R,r,N,E; R:=PositionVector([2*cos(p),sin(p)]); r:=RadiusOfCurvature(R); N:=PrincipalNormal(R,normalized); E:=PositionVector(convert(R+r*N,list)); p1:=PlotPositionVector(R,p=0..2*Pi,curveoptions=[color=red]); p2:=PlotPositionVector(E,p=0..2*Pi,curveoptions=[color=green]); p3:=display(p1,p2,scaling=constrained,labels=[x,y]); print(p3); end module: end use:
Figure 2.5.10(a) Ellipse and its evolute
Hence, the position-vector description for the evolute is
E=R+r N = 2 cos(p)sin(p)−4−3 cos2p3/224−3 cos2pcos(p)2 sin(p) = 32cos3(p)−2 sin3(p)
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Vector Calculus
Loading Student:-VectorCalculus
Execute the BasisFormat command at the right, or use the task template.
BasisFormatfalse:
Define C as the position vector R
Enter the vector notation for C as per Table 1.1.1. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Conversions≻To Position Vector
Context Panel: Assign to a Name≻R
2 cosp,sinp = →to position Vector →assign to a nameR
Obtain the radius of curvature
Write R and press the Enter key.
Context Panel: Student Vector Calculus≻ Frenet Formalism≻Radius of Curvature≻p
Context Panel: Simplify≻Assuming real
Context Panel: Assign to a Name≻r
R
→radius of curvature
−12⁢−3⁢cos⁡p2+43/2csgn⁡13⁢cos⁡p2−4
→assuming real
12⁢−3⁢cos⁡p2+43/2
→assign to a name
r
Obtain the principal normal N
Context Panel: Student Vector Calculus≻Frenet Formalism≻Principal Normal≻p
Context Panel: Assign to a Name≻N
Context Panel: Student Vector Calculus≻ Frenet Formalism≻Principal Normal≻p
Context Panel: Student Vector Calculus≻ Normalize≻Euclidean
Context Panel: Simplify≻Assuming Real
→principal normal
→Euclidean-normalize
N
Obtain the evolute as the position vector R+r N
Write R+r N, the expression for the evolute. Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻E
R+r N = = simplify →assign to a nameE
Obtain the graph of the ellipse and its evolute
Write the name of the position vector. Context Panel: Evaluate and Display Inline
Context Panel: Student Vector Calculus≻Conversions≻To List
Context Panel: Plots≻Plot Builder Set p∈0,2 π Options: Set color and select Constrained Scaling
Copy the graph of the evolute and paste it onto the graph of the ellipse.
E = →to list32⁢cos⁡p3,−3⁢sin⁡p3→
R = →to list2⁢cos⁡p,sin⁡p→
Maple Solution - Coded
Install the Student VectorCalculus package.
withStudent:-VectorCalculus:
Use the BasisFormat command to set the display of vectors.
Use the PositionVector command to define the ellipse as a position vector.
R≔PositionVector2 cosp,sinp:
Obtain the principal normal via the PrincipalNormal command with the normalized option. Apply the simplify command to this result.
N≔simplifyPrincipalNormalR,normalized assuming p∷real:
Obtain the radius of curvature via the RadiusOfCurvature command. Apply the simplify command to this result.
r≔simplifyRadiusOfCurvatureR assuming p∷real:
Apply the PositionVector command to obtain the evolute as a position vector.
E≔PositionVectorconvertsimplifyR+r N,list:
Use the PlotPositionVector command to graph the ellipse (in red) and the evolute (in green).
p1≔PlotPositionVectorR,p=0..2 π,curveoptions=color=red:p2≔PlotPositionVectorE,p=0..2 π,curveoptions=color=green:plots:-displayp1,p2,scaling=constrained, labels=x,y
<< Previous Example Section 2.5 Next Section >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document