Example 4-1-1 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Chapter 4: Partial Differentiation

Section 4.1: First-Order Partial Derivatives

Example 4.1.1

If f=x siny+y sinx and a,b=π/3,π/6, obtain fx and fy both at x,y and at a,b.

Solution

Maple Solution - Interactive

Calculating partial derivatives and evaluating them at a point can be done with just the Context Panel system.

 

Context Panel

• 

Control-drag the expression for f and press the Enter key.

• 

Context Panel: Differentiate≻With Respect To≻x (or y)

• 

Context Panel: Evaluate at a Point (see Figure 4.1.1(a)).

Figure 4.1.1(a)   Evaluate at a,b 

fx 

fy 

x siny+y sinx

xsiny+ysinx

differentiate w.r.t. x

siny+ycosx

evaluate at point

12+112π

x siny+y sinx

xsiny+ysinx

differentiate w.r.t. y

xcosy+sinx

evaluate at point

16π3+123

Defining f as an expression allows its partial derivatives to be calculated and evaluated at a point via some of the palette templates, allowing for a more natural notation to be displayed.

 

Define f as an expression

• 

Control-drag the expression for f.

• 

Context Panel: Assign to a Name≻f 

x siny+y sinxassign to a namef

Obtain fxx,y and fyx,y 

• 

Calculus palette: First-partial operator

• 

Context Panel: Evaluate and Display Inline

 x f = siny+ycosx

• 

Calculus palette: First-partial operator

• 

Context Panel: Evaluate and Display Inline

 y f = xcosy+sinx

Obtain fxa,b and fya,b

• 

Expression palette: Evaluation template
Calculus palette: First-partial operator

• 

Context Panel: Evaluate and Display Inline

 x fx=a|f(x)x=π/3,y=π/6 = 12+112π

• 

Expression palette: Evaluation template
Calculus palette: First-partial operator

• 

Context Panel: Evaluate and Display Inline

 y fx=a|f(x)x=π/3,y=π/6 = 16π3+123

A very high degree of notational faithfulness can be obtained by defining subscripts as operators.

 

• 

In the present context, the expression for f is already assigned to the name f.
Were this not so, the expression would have to be assigned to a name, preferably, f.

 

Define the functions  fx and fy 

• 

Write the symbols fx and fy as Atomic Identifiers.

• 

Calculus palette: First-partial operator

• 

Context Panel: Assign Function

fx 

fy 

f__xx,y= x fassign as functionf__x

f__yx,y= y fassign as functionf__y

Obtain fxx,y and fyx,y 

f__xx,y = siny+ycosx

f__yx,y = xcosy+sinx

Obtain fxa,b and fya,b 

f__xπ/3,π/6 = 12+112π

f__yπ/3,π/6 = 16π3+123

<< Chapter Overview   Section 4.1    Next Example >>

© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

For more information on Maplesoft products and services, visit www.maplesoft.com