Chapter 4: Partial Differentiation
Section 4.3: Chain Rule
Example 4.3.24
If the equation fx,y,z=0 implicitly defines z=zx,y, obtain zxy.
Solution
Mathematical Solution
Obtain zx by differentiating the identity fx,y,zx,y≡0 so that fx+fz zx=0⇒zx= −fxfz.
Obtain zy by differentiating the identity fx,y,zx,y≡0 so that fy+fz zy=0⇒zy= −fyfz.
Now differentiate −fx/fz as if it were a function gx,y,zx,y. The chain rule gives gy+gz zy, so that
zxy
=∂∂y−fxfz+∂∂z−fxfzzy
= −fz fxy−fx fzyfz2−fz fxz−fx fzzfz2−fyfz
= −fxyfz+fx fyzfz2+fy fxzfz2−fx fy fzzfz3
Note the use of the quotient rule for differentiation, the replacement of zy with −fy/fz, and the assumption of equality of mixed partial derivatives.
Maple Solution - Interactive
Obtain zxy
Write the equation fx,y,z=0; Press the Enter key.
Context Panel: Differentiate≻Implicitly Complete top portion of dialog as per Figure 4.3.24(a)
Context Panel: Expand≻Expand
Context Panel: Conversions≻to diff notation
Figure 4.3.24(a) Implicit Differentiation dialog
fx,y,z=0
f⁡x,y,z=0
→implicit differentiation
−D1,2⁡f⁡x,y,z⁢D3⁡f⁡x,y,z2−D1,3⁡f⁡x,y,z⁢D2⁡f⁡x,y,z⁢D3⁡f⁡x,y,z−D2,3⁡f⁡x,y,z⁢D1⁡f⁡x,y,z⁢D3⁡f⁡x,y,z+D3,3⁡f⁡x,y,z⁢D2⁡f⁡x,y,z⁢D1⁡f⁡x,y,zD3⁡f⁡x,y,z3
= expand
−D1,2⁡f⁡x,y,zD3⁡f⁡x,y,z+D1,3⁡f⁡x,y,z⁢D2⁡f⁡x,y,zD3⁡f⁡x,y,z2+D2,3⁡f⁡x,y,z⁢D1⁡f⁡x,y,zD3⁡f⁡x,y,z2−D3,3⁡f⁡x,y,z⁢D2⁡f⁡x,y,z⁢D1⁡f⁡x,y,zD3⁡f⁡x,y,z3
→to diff
−∂2∂x∂yf⁡x,y,z∂∂zf⁡x,y,z+∂2∂x∂zf⁡x,y,z⁢∂∂yf⁡x,y,z∂∂zf⁡x,y,z2+∂2∂y∂zf⁡x,y,z⁢∂∂xf⁡x,y,z∂∂zf⁡x,y,z2−∂2∂z2f⁡x,y,z⁢∂∂yf⁡x,y,z⁢∂∂xf⁡x,y,z∂∂zf⁡x,y,z3
Careful scrutiny reveals that this last expression is equivalent to
zxy=−fxyfz+fx fyzfz2+fy fxzfz2−fx fy fzzfz3
a form that can only be approximated in Maple output upon the invocation of functions from the Typesetting package.
Maple Solution - Coded
Initialize
Simplified Maple notation is available if the commands to the right are first executed.
interfacetypesetting=extended:Typesetting:-Suppressfx,y,z:Typesetting:-Settingsuserep=true:
Apply the implicitdiff command, and temper the result with expand and a convert
convertexpandimplicitdifff,zx,y,x,y,diff
−fx,yfz+fx,z⁢fyfz2+fy,z⁢fxfz2−fz,z⁢fy⁢fxfz3
The result without the conversion of notation
expandimplicitdifff,zx,y,x,y
The result without the expand and convert operations
implicitdifff,zx,y,x,y
The best output without the notational advantages of Typesetting
Remove the Typesetting notational improvements.
interfacetypesetting=standard:Typesetting:-Unsuppressfx,y,z:
extended
convertexpandimplicitdifffx,y,z,zx,y,x,y,diff
−∂2∂y⁢∂x⁢f⁡x,y,z∂∂z⁢f⁡x,y,z+∂2∂z⁢∂x⁢f⁡x,y,z⁢∂∂y⁢f⁡x,y,z∂∂z⁢f⁡x,y,z2+∂2∂z⁢∂y⁢f⁡x,y,z⁢∂∂x⁢f⁡x,y,z∂∂z⁢f⁡x,y,z2−∂2∂z2⁢f⁡x,y,z⁢∂∂y⁢f⁡x,y,z⁢∂∂x⁢f⁡x,y,z∂∂z⁢f⁡x,y,z3
<< Previous Example Section 4.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document