Chapter 4: Partial Differentiation
Section 4.3: Chain Rule
Example 4.3.25
If the equation x2+y3+z4+u5=1 implicitly defines u=ux,y,z, and the equation x+y2+z3=1 implicitly defines z=zx,y, obtain ux and uy.
Solution
Mathematical Solution
Differentiate each equation with respect to x, keeping in mind the implicitly defined functions in each.
∂∂xx2+y3+z4+u5=1⇒2 x+4 z3 zx+5 u4 ux=0⇒ux=−2 x+4 z3 zx5 u4
and
∂∂xx+y2+z3=1⇒1+3 z2 zx=0⇒zx=−13 z2
from which it follows that ux=−2 x+4 z3−13 z25 u4=4 z−6 x15 u4.
Differentiate each equation with respect to y, keeping in mind the implicitly defined functions in each.
∂∂yx2+y3+z4+u5=1⇒3 y2+4 z3 zy+5 u4 uy=0⇒uy=−3 y2+4 z3 zy5 u4
∂∂yx+y2+z3=1⇒2 y+3 z2 zy=0⇒zy=−2 y3 z2
from which it follows that uy=−3 y2+4 z3−2 y3 z25 u4=8 y z−9 y215 u4.
Maple Solution - Interactive
Obtain ux from first principles
Write the first equation with the appropriate dependencies made explicit.
Context Panel: Differentiate≻With Respect To≻x
x2+y3+zx,y4+ux,y,z5=1
x2+y3+z⁡x,y4+u⁡x,y,z5=1
→differentiate w.r.t. x
2⁢x+4⁢z⁡x,y3⁢∂∂x⁢z⁡x,y+5⁢u⁡x,y,z4⁢∂∂x⁢u⁡x,y,z=0
Write the second equation with the appropriate dependencies made explicit.
x+y2+zx,y3=1
x+y2+z⁡x,y3=1
1+3⁢z⁡x,y2⁢∂∂x⁢z⁡x,y=0
Using equation labels, make a sequence of the two equations resulting from differentiation, and press the Enter key.
Context Panel: Solve≻Solve for Variables≻ux,zx Enter as per Figure 4.3.25(a).
Figure 4.3.25(a) Variables dialog
,
2⁢x+4⁢z⁡x,y3⁢∂∂x⁢z⁡x,y+5⁢u⁡x,y,z4⁢∂∂x⁢u⁡x,y,z=0,1+3⁢z⁡x,y2⁢∂∂x⁢z⁡x,y=0
→solve (specified)
∂∂x⁢u⁡x,y,z=215⁢−3⁢x+2⁢z⁡x,yu⁡x,y,z4,∂∂x⁢z⁡x,y=−13⁢z⁡x,y2
Thus, ux=215 2 z−3 xu4=4 z−6 x15 u4.
Obtain uy from first principles
Context Panel: Differentiate≻With Respect To≻y
→differentiate w.r.t. y
3⁢y2+4⁢z⁡x,y3⁢∂∂y⁢z⁡x,y+5⁢u⁡x,y,z4⁢∂∂y⁢u⁡x,y,z=0
2⁢y+3⁢z⁡x,y2⁢∂∂y⁢z⁡x,y=0
Context Panel: Solve≻Solve for Variables≻uy,zy Enter as per Figure 4.3.25(b).
Figure 4.3.25(b) Variables dialog
3⁢y2+4⁢z⁡x,y3⁢∂∂y⁢z⁡x,y+5⁢u⁡x,y,z4⁢∂∂y⁢u⁡x,y,z=0,2⁢y+3⁢z⁡x,y2⁢∂∂y⁢z⁡x,y=0
∂∂y⁢u⁡x,y,z=115⁢y⁢−9⁢y+8⁢z⁡x,yu⁡x,y,z4,∂∂y⁢z⁡x,y=−23⁢yz⁡x,y2
Thus, uy=115 y 8 z−9 yu4=8 y z−9 y215 u4.
Maple Solution - Coded
Apply the implicitdiff command
implicitdiffx2+y3+z4+u5=1,x+y2+z3=1,u,z,u,z,x
D1⁡u=215⁢2⁢z−3⁢xu4,D1⁡z=−13⁢z2
implicitdiffx2+y3+z4+u5=1,x+y2+z3=1,u,z,u,z,y
D2⁡u=115⁢y⁢8⁢z−9⁢yu4,D2⁡z=−23⁢yz2
From the first calculation, obtain ux=215⁢2⁢z−3⁢xu4; and from the second, uy=115⁢y⁢8⁢z−9⁢yu4.
A solution from first principles can also be constructed with the implicitdiff command.
Apply the implicitdiff command to each of the two given equations to obtain ux
implicitdiffx2+y3+z4+u5=1,u,z,u,z,x
D1⁡u=−45⁢z3⁢D1⁡zu4−25⁢xu4,D1⁡z=D1⁡z
implicitdiffx+y2+z3=1,z,z,x
D1⁡z=−13⁢z2
Use the eval command to substitute zx into the expression for ux
eval,
−13⁢z2=−13⁢z2,D1⁡u=415⁢zu4−25⁢xu4
From this, extract ux=415⁢zu4−25⁢xu4=215⁢2⁢z−3⁢xu4.
Apply the implicitdiff command to each of the two given equations to obtain uy
implicitdiffx2+y3+z4+u5=1,u,z,u,z,y
D2⁡u=−45⁢z3⁢D2⁡zu4−35⁢y2u4,D2⁡z=D2⁡z
implicitdiffx+y2+z3=1,z,z,y
D2⁡z=−23⁢yz2
Use the eval command to substitute zy into the expression for uy
−23⁢yz2=−23⁢yz2,D2⁡u=815⁢y⁢zu4−35⁢y2u4
From this, extract uy=815⁢y⁢zu4−35⁢y2u4=115⁢y⁢8⁢z−9⁢yu4.
<< Previous Example Section 4.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document