Chapter 5: Double Integration
Section 5.2: Iterated Double Integrals
Example 5.2.2
If fx,y=7−3 x2−5 y2, and R is the rectangular region −1≤x≤1,−1/2≤y≤1/2, evaluate ∫∫Rf dA by both possible iterations.
Solution
Mathematical Solution
The two possible iterations of the double integral evaluated in Example 5.1.1 are
∫x=−1x=1∫y=−1/2y=1/27−3 x2−5 y2 ⅆy ⅆx = 676
∫y=−1/2y=1/2∫x=−1x=17−3 x2−5 y2 ⅆx ⅆy = 676
The "inner" integral is evaluated first, holding the "other" variable constant. The result is then a single definite integral, that is, the "outer" integral is the integral of the result of the "inner" integral.
To evaluate the iterated integral ∫−11∫−1/21/27−3 x2−5 y2 dy dx, hold x constant and integrate 7−3 x2−5 y2 with respect to y to get 7 y−3 x2y−5 y3/3y=−1/2y=1/2=79/12−3 x2. Integrated this with respect to x, obtaining 79 x/12−x3x=−1x=1=67/6.
To evaluate the iterated integral ∫−1/21/2∫−117−3 x2−5 y2 dx dy, hold y constant and integrate 7−3 x2−5 y2 with respect to x to get 7 x−x3−5 x y2x=−1x=1=12−10 y2. Integrated this with respect to y, obtaining 12 y−10 y3/3y=−1/2y=1/2=67/6.
Maple Solution - Interactive
Initialize
Context Panel: Assign Name
f=7−3 x2−5 y2→assign
Iterate and evaluate
Calculus palette: Template for (definite) iterated double-integral
Context Panel: Evaluate and Display Inline
∫−11∫−1/21/2f ⅆy ⅆx = 676
∫−1/21/2∫−11f ⅆx ⅆy = 676
Inert iterated double-integral and its evaluation
Calculus palette: Template for (definite) iterated double-integral Context Panel: 2-D Math≻Convert To≻Inert Form Press the Enter key.
Context Panel: Evaluate Integral
∫−11∫−1/21/2f ⅆy ⅆx
∫−11∫−1212−3⁢x2−5⁢y2+7ⅆyⅆx
=
676
∫−1/21/2∫−11f ⅆx ⅆy
∫−1212∫−11−3⁢x2−5⁢y2+7ⅆxⅆy
Maple Solution - Coded
Define the integrand.
f≔7−3 x2−5 y2:
Use the Int command to set the unevaluated integral, and the int command for immediate evaluation.
Intf,x=−1..1,y=−1/2..1/2=intf,x=−1..1,y=−1/2..1/2
∫−1212∫−11−3⁢x2−5⁢y2+7ⅆxⅆy=676
Intf,y=−1/2..1/2,x=−1..1=intf,y=−1/2..1/2,x=−1..1
∫−11∫−1212−3⁢x2−5⁢y2+7ⅆyⅆx=676
The MultiInt command in the Student MultivariateCalculus package is designed to set up an iterated multiple integral, and return its value, its inert form, or a stepwise evaluation. Section 5.3 details how this command can be accessed through the Context Panel.
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Use the MultiInt command to return the unevaluated iterated integral
MultiIntf,x=−1..1,y=−1/2..1/2,output=integral
MultiIntf,y=−1/2..1/2,x=−1..1,output=integral
Use the MultiInt command to return the value of the iterated integral
MultiIntf,x=−1..1,y=−1/2..1/2 = 676
MultiIntf,y=−1/2..1/2,x=−1..1 = 676
Use the MultiInt command to obtain a stepwise evaluation of the iterated integral
MultiIntf,x=−1..1,y=−1/2..1/2,output=steps
∫−1212∫−11−3⁢x2−5⁢y2+7ⅆxⅆy=∫−1212−x3−5⁢x⁢y2+7⁢xx=−1..1|−x3−5⁢x⁢y2+7⁢xx=−1..1ⅆy=∫−1212−10⁢y2+12ⅆy=−103⁢y3+12⁢yy=−12..12|−103⁢y3+12⁢yy=−12..12
MultiIntf,y=−1/2..1/2,x=−1..1,output=steps
∫−11∫−1212−3⁢x2−5⁢y2+7ⅆyⅆx=∫−11−53⁢y3−3⁢x2⁢y+7⁢yy=−12..12|−53⁢y3−3⁢x2⁢y+7⁢yy=−12..12ⅆx=∫−11−3⁢x2+7912ⅆx=−x3+7912⁢xx=−1..1|−x3+7912⁢xx=−1..1
<< Previous Example Section 5.2 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document