Chapter 5: Double Integration
Section 5.6: Changing Variables in a Double Integral
Example 5.6.1
Let R be the interior and boundary of the triangle whose vertices are 1,2, 4,9, and 3,5.
Integrate fx,y=2 x+3 y over R, noting that it takes two iterations to cover R.
Make the change of variables u=2 y−3 x−1/5, v=7 x−3 y−1/5 and evaluate the integral of f over the image of R under this change of variables.
Solution
Mathematical Solution
Figure 5.6.1(a) shows the region R; Figure 5.6.1(b) shows R′, the image of R under the given change of variables.
Figure 5.6.1(a) Region R
Figure 5.6.1(b) Region R′
Table 5.6.1(a) gives the equations of the edges of the triangle defining region R. Table 5.6.1(b) lists the equations for the mappings between regions R and R′.
Line
Equation
LAB
y=7 x−1/3
LBC
y=4 x−7
LCA
y=3 x+1/2
Table 5.6.1(a) Edges of R
Mapping R′→R
Mapping R→R′
x=3 u+2 v+1
u=2 y−3 x−1/5
y=7 u+3 v+2
v=7 x−3 y−1/5
Table 5.6.1(b) Mappings R↔R′
The Jacobian matrix is 3273 and the Jacobian itself is ∂x,y∂u,v= −5, the determinant of the Jacobian matrix. Since fxu,v,yu,v=23 u+2 v+1+37 u+3 v+2=27⁢u+13⁢v+8, the requisite integrals are then
∫∫Rfx,y dy dx = ∫13∫3 x+127 x−132⁢x+3⁢yⅆyⅆx+∫34∫4 x−77 x−132⁢x+3⁢yⅆyⅆx = 1603
and
∫∫R′fxu,v,yu,v∂x,y∂u,v dv du = ∫01∫01−u527⁢u+13⁢v+8ⅆvⅆu = 1603
Maple Solution - Interactive
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Context Panel: Assign Name
P=1,2,4,9,3,5→assign
f=2 x+3 y→assign
U=2 y−3 x−1/5→assign
Context Panel: Assign name
V=7 x−3 y−1/5→assign
Obtain the equations for the edges of region R
Make a list of two consecutive vertices. Context Panel: Student Multivariate Calculus≻Lines & Planes≻Line
Context Panel: Student Multivariate Calculus≻Lines & Planes≻Representation≻equation
Context Panel: Solve≻Isolate Expression for≻y
Context Panel: ≻Assign to a Name≻s[12], s[23], s[31] (as appropriate)
P1,P2→make line<< Line 1 >>→representation−73⁢x+y=−13→isolate for yy=−13+73⁢x→assign to a names12
P2,P3→make line<< Line 2 >>→representation−4⁢x+y=−7→isolate for yy=−7+4⁢x→assign to a names23
P3,P1→make line<< Line 3 >>→representation−32⁢x+y=12→isolate for yy=12+32⁢x→assign to a names31
Implement the integration over the region R
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
∫13∫3 x+127 x−13f ⅆy ⅆx+∫34∫4 x−77 x−13f ⅆy ⅆx = 1603
Change coordinates and implement the integration in the new coordinate system.
Obtain the equations S=x=xu,v,y=yu,v for the mapping u,v→x,y
Write the equations for the mapping v⁡x,t⁢will now be displayed as⁢v. Press the Enter key.
Context Panel: Solve≻Solve for Variables≻x,y
Context Panel: Assign to a Name≻S
u=U,v=V
u=25⁢y−35⁢x−15,v=75⁢x−35⁢y−15
→solve (specified)
x=2⁢v+1+3⁢u,y=7⁢u+2+3⁢v
→assign to a name
S
Obtain the Jacobian matrix and the Jacobian
Expression palette: Evaluation template Evaluate x and then y using the information in set S
Context Panel: Assign to a Name≻X or Y, as appropriate
Form the list X,Y Context Panel: Evaluate and Display Inline
Context Panel: Student Multivariate Calculus≻Differentiate≻Jacobian
xx=a|f(x)S = 2⁢v+1+3⁢u→assign to a nameX
yx=a|f(x)S = 7⁢u+2+3⁢v→assign to a nameY
X,Y = 2⁢v+1+3⁢u,7⁢u+2+3⁢v→Jacobian−5
Obtain the Jacobian matrix and the Jacobian from first principles
Matrix palette: Insert template for 2×2 matrix.
Calculus palette: Partial derivative operator
Context Panel: Standard Operations≻Determinant
∂∂ u X∂∂ v X∂∂ u Y∂∂ v Y = →determinant−5
Obtain the images of the edges of the triangle defining region R
Expression palette: Evaluation template Evaluate the equation of each edge of R using the equations in set S Press the Enter key.
Context Panel: Move to Left
Context Panel: Solve≻Isolate Expression for≻v (Just for equation s23.)
s12x=a|f(x)S
7⁢u+2+3⁢v=2+143⁢v+7⁢u
→move to left
−53⁢v=0
s23x=a|f(x)S
7⁢u+2+3⁢v=−3+8⁢v+12⁢u
−5⁢u+5−5⁢v=0
→isolate for v
v=1−u
s31x=a|f(x)S
7⁢u+2+3⁢v=2+3⁢v+92⁢u
52⁢u=0
Transform the integrand
Expression palette: Evaluation template Evaluate f using the equations in set S.
Context Panel: Assign to a Name≻F
fx=a|f(x)S = 13⁢v+8+27⁢u→assign to a nameF
Implement the integration over the region R′
∫01∫01−u5 F ⅆv ⅆu = 1603
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Define the vertices of the triangle defining R.
A,B,C≔1,2,4,9,3,5:
Define the integrand f.
f≔x,y→2 x+3 y:
Define the mapping v⁡x,t⁢will now be displayed as⁢v.
U≔x,y→2 y−3 x−1/5:V≔x,y→7 x−3 y−1/5:
Use the Line command to form the line object.
Apply the GetRepresentation command with the form option set to "equation" to get the equation.
Use the isolate command to write the equations in the form y=…
sAB≔isolateGetRepresentationLineA,B,form=equation,y;sBC≔isolateGetRepresentationLineB,C,form=equation,y;sCA≔isolateGetRepresentationLineC,A,form=equation,y
y=−13+73⁢x
Use the Int command to generate the inert integral and apply the value command to evaluate it.
Q≔Intfx,y,y=3 x+1/2..7 x−1/3,x=1..3 +Intfx,y,y=4 x−7..7 x−1/3,x=3..4; valueQ
∫13∫12+32⁢x−13+73⁢x2⁢x+3⁢yⅆyⅆx+∫34∫−7+4⁢x−13+73⁢x2⁢x+3⁢yⅆyⅆx
Apply the solve command.
S≔solveu=Ux,y,v=Vx,y,x,y
x=3⁢u+2⁢v+1,y=7⁢u+3⁢v+2
Use the eval command to obtain a list of expressions xu,v,yu,v.
Apply the Jacobian command in its two forms, one to get the matrix, and one to get the determinant.
L≔evalx,y,S;JacobianL,u,v;JacobianL,u,v,output=determinant
3⁢u+2⁢v+1,7⁢u+3⁢v+2
Use the eval command to make the replacements x→xu,v and y→yu,v in the equation of each edge of the region R.
Use the lhs and rhs commands to move all terms to the left of the resulting equation.
temp≔evalsAB,S:lhstemp−rhstemp=0
temp≔evalsBC,S:lhstemp−rhstemp=0
−5⁢u−5⁢v+5=0
Hence: v=1−u.
temp≔evalsCA,S:lhstemp−rhstemp=0
Use the eval command to make the replacements x→xu,v and y→yu,v in fx,y.
F≔evalfx,y,S
27⁢u+13⁢v+8
q≔Int5 F,v=0..1−u,u=0..1;valueq
∫01∫01−u135⁢u+65⁢v+40ⅆvⅆu
<< Chapter Overview Section 5.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document