Chapter 6: Applications of Double Integration
Section 6.1: Area
Example 6.1.3
Use the double integral to calculate the area of the region R, the region bounded by the graphs of fx=sinx and gx=sin2 x on 0≤x≤π.
Solution
Mathematical Solution
The region R is shaded in the graph shown in Figure 6.1.3(a). The simplest iteration of the double integral that gives the area of R takes the integrand as 1 and uses the order dy dx:
∫0π/3∫sinxsin2 x1 ⅆy ⅆx+∫π/3π∫sin2 xsinx1 ⅆy ⅆx = 52
It takes two iterated double integrals to obtain the requisite area because the curves "cross" at x=π/3. The first iterated double integral computes the area shaded green in Figure 6.1.3(a); the second, the red.
plots:-shadebetween(sin(x), sin(2*x),x=0..Pi,color=blue, thickness=3,changefill=[color =[red,green]],scaling=constrained,labels=[x,y],tickmarks=[piticks,3]);
Figure 6.1.3(a) The region R
Maple Solution - Interactive
Obtain the intersections of the curves bounding R
Write a sequence of the two equations defining the bounding curves.
Context Panel: Solve≻Solve
sinx=sin2 x→solvex=0,x=π,x=13⁢π,x=−13⁢π
Iterate in the order dy dx via the template in the Calculus palette
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Maple Solution - Coded
Initialize
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Top-level, using the Int and int commands
Int1,y=sinx..sin2 x,x=0..π/3+Int1,y=sin2 x..sinx,x=π/3..π=int1,y=sinx..sin2 x,x=0..π/3+int1,y=sin2 x..sinx,x=π/3..π
∫013⁢π∫sin⁡xsin⁡2⁢x1ⅆyⅆx+∫13⁢ππ∫sin⁡2⁢xsin⁡x1ⅆyⅆx=52
Use the MultiInt command from the Student MultivariateCalculus package
MultiInt1,y=sinx..sin2 x,x=0..π/3+MultiInt1,y=sin2 x..sinx,x=π/3..π = 52
MultiInt1,y=sinx..sin2 x,x=0..π/3,output=integral+MultiInt1,y=sin2 x..sinx,x=π/3..π,output=integral
∫013⁢π∫sin⁡xsin⁡2⁢x1ⅆyⅆx+∫13⁢ππ∫sin⁡2⁢xsin⁡x1ⅆyⅆx
Use the MultiInt command with a pre-defined domain option
MultiInt1,x,y=Region0..π/3,sinx..sin2 x+ MultiInt1,x,y=Regionπ/3..π,sin2 x..sinx
52
MultiInt1,x,y=Region0..π/3,sinx..sin2 x,output=integral+ MultiInt1,x,y=Regionπ/3..π,sin2 x..sinx,output=integral
<< Previous Example Section 6.1 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document