Chapter 6: Applications of Double Integration
Section 6.2: Volume
Example 6.2.4
If F=3 x2+2 y2+1 and R is the region bounded by the graphs of fx=arctanx+1−1/2 and gx=sinx on the interval x∈0,π/2, calculate the volume of the region bounded above by the surface that is the graph of z=Fx,y and below by the plane z=0. See Example 6.1.4.
Solution
Mathematical Solution
The region whose volume is to be computed is shown in Figure 6.2.4(a). The simplest iteration of the double integral that gives the requisite volume takes the integrand as F and uses the order dy dx. The intersection of f and g, namely, X≐0.506, must be obtained numerically.
∫0X∫sinxfxF ⅆy ⅆx+∫Xπ/2∫fxsinxF ⅆy ⅆx ≐ 1.57
It takes two iterated double integrals to obtain the requisite area because the curves "cross" at x=X.
use plots in module() local X,p1,p2,p3,F,f,g; X:=0.5059163080; F:=3*x^2+2*y^2+1; f:=arctan(x+1)-1/2; g:=sin(x); p1:=shadebetween(0,F,x=0..X,y=g..f,changefill=[transparency=0]); p2:=shadebetween(0,F,x=X..Pi/2,y=f..g,changefill=[transparency=0]); p3:=display(p1,p2,orientation=[-160,80,0],axes=frame,labels=[x,y,z],tickmarks=[[0,1],2,4],lightmodel=none); print(p3); end module: end use:
Figure 6.2.4(a) The volume to be computed
Maple Solution - Interactive
Initialize
Context Panel: Assign Name
F=3 x2+2 y2+1→assign
Context Panel: Assign name
f=arctanx+1−1/2→assign
g=sinx→assign
Obtain the intersections of the curves bounding R
Equate fx and gx, then press the Enter key.
Context Panel: Solve≻Numerically Solve
Context Panel: Assign to a Name≻X
f=g
arctan⁡x+1−12=sin⁡x
→solve
0.5059163080
→assign to a name
X
Iterate in the order dy dx via the template in the Calculus palette
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
∫0X∫gfF ⅆy ⅆx+∫Xπ/2∫fgF ⅆy ⅆx = 1.572488959
Maple Solution - Coded
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Define the integrand F.
F≔3 x2+2 y2+1:
Define the two bounding curves.
f≔arctanx+1−1/2:g≔sinx:
Solve the equation fx=gx for x
Obtain a numeric solution with the fsolve command.
X≔fsolvef=g,x
Top-level, using the Int and int commands
IntF,y=g..f,x=0..X+IntF,y=f..g,x=X..π/2=intF,y=g..f,x=0..X+intF,y=f..g,x=X..π/2
∫00.5059163080∫sin⁡xarctan⁡x+1−123⁢x2+2⁢y2+1ⅆyⅆx+∫0.505916308012⁢π∫arctan⁡x+1−12sin⁡x3⁢x2+2⁢y2+1ⅆyⅆx=1.572488959
Use the MultiInt command from the Student MultivariateCalculus package
MultiIntF,y=g..f,x=0..X+ MultiIntF,y=f..g,x=X..π/2 = 1.572488959
MultiIntF,y=g..f,x=0..X,output=integral+ MultiIntF,y=f..g,x=X..π/2,output=integral
∫00.5059163080∫sin⁡xarctan⁡x+1−123⁢x2+2⁢y2+1ⅆyⅆx+∫0.505916308012⁢π∫arctan⁡x+1−12sin⁡x3⁢x2+2⁢y2+1ⅆyⅆx
Use the MultiInt command with a pre-defined domain option
MultiIntF,x,y=Region0..X,g..f+ MultiIntF,x,y=RegionX..π/2,f..g
1.572488959
MultiIntF,x,y=Region0..X,g..f,output=integral+MultiIntF,x,y=RegionX..π/2,f..g,output=integral
<< Previous Example Section 6.2 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document