Chapter 6: Applications of Double Integration
Section 6.4: Average Value
Example 6.4.6
Find the average value of Fr,θ=1+2 r cosθ+3 r sinθ over R, the interior of the loop of the 4-leaf rose r=cos2 θ that straddles the positive x-axis. See Example 5.7.1.
Solution
Mathematical Solution
Figure 6.4.6(a) shows the function Fr,θ drawn over the loop straddling the positive x-axis in the graph of the 4-leaf rose r=cos2 θ.
The shading down to the base plane z=0 indicates the volume that is computed as the numerator of the expression for the average value of F. Indeed, this expression is
∫−π/4π/4∫0cos2 θF⋅r ⅆr ⅆθ∫−π/4π/4∫0cos2 θr ⅆr ⅆθ
=1+256105⁢2π
≐2.097528461
use plots, plottools in module() local p1,p2,p3,p4,F,f; F:=1+2*r*cos(theta)+3*r*sin(theta); p1:=plot([cos(2*t),t,t=-Pi..Pi],coords=polar,color=red,thickness=2): p2:=coordplot(polar,color=[gray,gray]): f:=transform((x,y)->[x,y,0]): p3:=plot3d(F,r=0..cos(2*theta),theta=-Pi/4..Pi/4,coords=cylindrical,filled=true,lightmodel=none,glossiness=0): p4:=display(f(p1),f(p2),p3,lightmodel=none,axes=frame,labels=[x,y,z],tickmarks=[3,3,3],orientation=[-100,70,0]); print(p4); end module: end use:
Figure 6.4.6(a) Graph of Fr,θ
Maple Solution - Interactive
The simplest approach to finding the average value in polar coordinates is to use the task template shown in Table 6.4.6(a).
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Average Value≻Polar
Average Value of a Function in Polar Coordinates
Integrand
1+2 r cosθ+3 r sinθ
1+2⁢r⁢cos⁡θ+3⁢r⁢sin⁡θ
Region: r1θ≤r≤r2θ,a≤θ≤b
r1θ
0
r2θ
cos2 θ
cos⁡2⁢θ
a
−π/4
−14⁢π
b
π/4
14⁢π
Inert Integral: dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusFunctionAverage,r=..,θ=..,coordinates=polarr,θ,output=integral
∫−14⁢π14⁢π∫0cos⁡2⁢θ1+2⁢r⁢cos⁡θ+3⁢r⁢sin⁡θ⁢rⅆrⅆθ∫−14⁢π14⁢π∫0cos⁡2⁢θrⅆrⅆθ
Value
StudentMultivariateCalculusFunctionAverage,r=..,θ=..,coordinates=polarr,θ
8⁢32105⁢2+18⁢ππ
Table 6.4.6(a) In polar coordinates, computation of average value by task template
A solution from first principles is implemented in Table 6.4.6(b).
Initialize
Context Panel: Assign name
F=1+2 r cosθ+3 r sinθ→assign
Calculate the average value of F
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Expand≻Expand
Context Panel: Approximate≻10 (digits)
∫−π/4π/4∫0cos2 θF⋅r ⅆr ⅆθ∫−π/4π/4∫0cos2 θr ⅆr ⅆθ = 8⁢32105⁢2+18⁢ππ= expand 256105⁢2π+1→at 10 digits2.097528461
Table 6.4.6(b) From first principles and in polar coordinates, calculation of average value
Maple Solution - Coded
Define F.
F≔1+2 r cosθ+3 r sinθ:
Compute the average value of F
Apply the FunctionAverage command from the Student MultivariateCalculus package.
Use the expand and evalf commands to modify the form of the average value.
Student:-MultivariateCalculus:-FunctionAverageF,r=0..cos2 θ,θ=−π/4..π/4,coordinates=polarr,θ,output=integral
q≔Student:-MultivariateCalculus:-FunctionAverageF,r=0..cos2 θ,θ=−π/4..π/4,coordinates=polarr,θ
expandq = 256105⁢2π+1
evalfq = 2.097528462
<< Previous Example Section 6.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document