Chapter 6: Applications of Double Integration
Section 6.4: Average Value
Example 6.4.7
Find the average value of Fr,θ=4−3 r cosθ+5 r sinθ over R, the region that is inside the cardioid r=1+ cosθ but outside the circle r=1. See Example 5.7.2.
Solution
Mathematical Solution
Figure 6.4.7(a) shows the function Fr,θ drawn over the region R. The integral in the numerator for the average value is over the shaded region. The average value itself is then
∫−π/2π/2∫11+ cos θF⋅r ⅆr ⅆθ∫−π/2π/2∫11+ cos θr ⅆr ⅆθ
=4−78⁢π14⁢π+2
=12⁢32−7 ππ+8
≐0.4491660992
Figure 6.4.7(a) Graph of Fr,θ
Maple Solution - Interactive
The simplest approach to finding the average value in polar coordinates is to use the task template shown in Table 6.4.7(a).
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Average Value≻Polar
Average Value of a Function in Polar Coordinates
Integrand
4−3 r cosθ+5 r sinθ
4−3⁢r⁢cos⁡θ+5⁢r⁢sin⁡θ
Region: r1θ≤r≤r2θ,a≤θ≤b
r1θ
1
r2θ
1+cosθ
1+cos⁡θ
a
−π/2
−12⁢π
b
π/2
12⁢π
Inert Integral: dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusFunctionAverage,r=..,θ=..,coordinates=polarr,θ,output=integral
∫−12⁢π12⁢π∫11+cos⁡θ4−3⁢r⁢cos⁡θ+5⁢r⁢sin⁡θ⁢rⅆrⅆθ∫−12⁢π12⁢π∫11+cos⁡θrⅆrⅆθ
Value
StudentMultivariateCalculusFunctionAverage,r=..,θ=..,coordinates=polarr,θ
4−78⁢π14⁢π+2
Table 6.4.7(a) In polar coordinates, computation of average value by task template
A solution from first principles is implemented in Table 6.4.7(b).
Initialize
Context Panel: Assign name
F=4−3 r cosθ+5 r sinθ→assign
Calculate the average value of F
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Simplify≻Normalize
Context Panel: Approximate≻10 (digits)
∫−π/2π/2∫11+ cos θF⋅r ⅆr ⅆθ∫−π/2π/2∫11+ cos θr ⅆr ⅆθ = 4−78⁢π14⁢π+2→normalize−12⁢−32+7⁢ππ+8→at 10 digits0.4491660992
Table 6.4.7(b) From first principles and in polar coordinates, calculation of average value
Maple Solution - Coded
Define F.
F≔4−3 r cosθ+5 r sinθ:
Compute the average value of F
Apply the FunctionAverage command from the Student MultivariateCalculus package.
Use the normal and evalf commands to modify the form of the average value.
Student:-MultivariateCalculus:-FunctionAverageF,r=1..1+cosθ,θ=−π/2..π/2,coordinates=polarr,θ,output=integral
q≔Student:-MultivariateCalculus:-FunctionAverageF,r=1..1+cosθ,θ=−π/2..π/2,coordinates=polarr,θ
normalq = −12⁢−32+7⁢ππ+8
evalfq = 0.4491660992
<< Previous Example Section 6.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document