Chapter 6: Applications of Double Integration
Section 6.5: First Moments
Example 6.5.1
Determine the coordinates of the centroid of R, the region bounded by y=1−x2 and the x-axis.
Solution
Mathematical Solution
Figure 6.5.1(a) shows the region R in red, and the surface ρ=1, in blue. The green dot represents the centroid x&conjugate0;,y&conjugate0;=. The relevant calculations are tabulated to the left of the figure.
A=∫−11∫01−x21 ⅆy ⅆx = π/2
Mx=∫−11∫01−x2y ⅆy ⅆx = 2/3
My=∫−11∫01−x2x ⅆy ⅆx = 0
x&conjugate0;=My/A=0
y&conjugate0;=Mx/A=43 π
Figure 6.5.1(a) Centroid, R, and ρ=1
Maple Solution - Interactive
Table 6.5.1(a) contains a solution via the task template that implements the CenterOfMass command from the Student MultivariateCalculus package. If the density ρ is set to 1, the center of mass is the same point as the centroid.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Center of Mass≻Cartesian 2-D
Center of Mass for Planar Region in Cartesian Coordinates
Density:
1
Region: ux≤y≤vx,a≤x≤b
ux
0
vx
1−x2
−x2+1
a
−1
b
Moments÷Mass:
Inert Integral - dy dx
StudentMultivariateCalculusCenterOfMass, x=..,y=..,output=integral
∫−11∫0−x2+1xⅆyⅆx∫−11∫0−x2+11ⅆyⅆx,∫−11∫0−x2+1yⅆyⅆx∫−11∫0−x2+11ⅆyⅆx
Explicit values for x&conjugate0; and y&conjugate0;
StudentMultivariateCalculusCenterOfMass,x=..,y=..
0,43⁢π
Plot:
StudentMultivariateCalculusCenterOfMass,x=..,y=..,output=plot,caption=
Table 6.5.1(a) Calculation of center of mass via task template
The figure produced by the option "output = plot" has had constrained scaling imposed via the Context Panel for the graph. The graph itself shows the region R in red, and the function ρ=1 in blue. The centroid is represented by the green dot.
The Cartesian coordinates of the centroid are therefore x&conjugate0;,y&conjugate0;=.
A solution from first principles is detailed in Table 6.5.1(b).
Obtain A, the total area in region R
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻A
∫−11∫01−x21 ⅆy ⅆx = 12⁢π→assign to a nameA
Obtain Mx, the total moments about the x-axis
Context Panel: Assign to a Name≻Mx
∫−11∫01−x2y ⅆy ⅆx = 23→assign to a nameMx
Obtain My, the total moments about the y-axis
Context Panel: Assign to a Name≻My
∫−11∫01−x2x ⅆy ⅆx = 0→assign to a nameMy
Obtain x&conjugate0;=My/A
My/A = 0
Obtain y&conjugate0;=Mx/A
Mx/A = 43⁢π
Table 6.5.1(b) Calculation of the centroid from first principles
Maple Solution - Coded
Total area
Use the Int and value commands.
q≔Int1,y=0..sqrt1−x2,x=−1..1
∫−11∫0−x2+11ⅆyⅆx
A≔valueq
12⁢π
First Moments
q≔Inty,y=0..sqrt1−x2,x=−1..1
∫−11∫0−x2+1yⅆyⅆx
Mx≔valueq
23
q≔Intx,y=0..sqrt1−x2,x=−1..1
∫−11∫0−x2+1xⅆyⅆx
My≔valueq
Coordinates of centroid x&conjugate0;,y&conjugate0;
MyA,MxA = 0,43⁢π
<< Chapter Overview Section 6.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document