Chapter 6: Applications of Double Integration
Section 6.5: First Moments
Example 6.5.2
Determine the coordinates of the center of mass of a lamina in the shape of R in Example 6.5.1 if its density is equal to the square of the distance from the point 0,1/2.
Solution
Mathematical Solution
Figure 6.5.2(a) shows the region R in red, and the surface ρ=x2+y−1/22, in blue. The green dot represents the center of mass x&conjugate0;,y&conjugate0;=0,15⁢68−15 π9⁢π−16. The relevant calculations are tabulated to the left of the figure.
m=∫−11∫01−x2ρ ⅆy ⅆx = 38⁢π−23
Mx=∫−11∫01−x2ρ⋅y ⅆy ⅆx = 1730−18⁢π
My=∫−11∫01−x2ρ⋅x ⅆy ⅆx = 0
x&conjugate0;=My/m=0
y&conjugate0;=Mx/m=15⁢68−15 π9⁢π−16
Figure 6.5.2(a) Region R, the CM, and ρ
Maple Solution - Interactive
Table 6.5.2(a) contains a solution via the task template that implements the CenterOfMass command from the Student MultivariateCalculus package. The density is ρ=x2+y−1/22.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Center of Mass≻Cartesian 2-D
Center of Mass for Planar Region in Cartesian Coordinates
Density:
x2+y−1/22
x2+y−122
Region: ux≤y≤vx,a≤x≤b
ux
0
vx
1−x2
−x2+1
a
−1
b
1
Moments÷Mass:
Inert Integral - dy dx
StudentMultivariateCalculusCenterOfMass, x=..,y=..,output=integral
∫−11∫0−x2+1x2+y−122⁢xⅆyⅆx∫−11∫0−x2+1x2+y−122ⅆyⅆx,∫−11∫0−x2+1x2+y−122⁢yⅆyⅆx∫−11∫0−x2+1x2+y−122ⅆyⅆx
Explicit values for x&conjugate0; and y&conjugate0;
StudentMultivariateCalculusCenterOfMass,x=..,y=..
0,1730−18⁢π38⁢π−23
Plot:
StudentMultivariateCalculusCenterOfMass,x=..,y=..,output=plot,caption=
Table 6.5.2(a) Calculation of center of mass via task template
The figure produced by the option "output = plot" has had constrained scaling imposed via the Context Panel for the graph. The graph itself shows the region R in red, and the function ρx,y in blue. The center of mass is represented by the green dot.
The Cartesian coordinates of the center of mass are therefore x&conjugate0;,y&conjugate0;=0,15⁢68−15 π9⁢π−16.
A solution from first principles is detailed in Table 6.5.2(b).
Define the density function ρ
Context Panel: Assign Name
ρ=x2+y−1/22→assign
Obtain m, the total mass in region R
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻m
∫−11∫01−x2ρ ⅆy ⅆx = 38⁢π−23→assign to a namem
Obtain Mx, the total moments about the x-axis
Context Panel: Assign to a Name≻Mx
∫−11∫01−x2ρ⋅y ⅆy ⅆx = 1730−18⁢π→assign to a nameMx
Obtain My, the total moments about the y-axis
Context Panel: Assign to a Name≻My
∫−11∫01−x2ρ⋅x ⅆy ⅆx = 0→assign to a nameMy
Obtain x&conjugate0;=My/m
My/m = 0
Obtain y&conjugate0;=Mx/m
Context Panel: Simplify≻Simplify
Context Panel: Approximate≻10 (digits)
Mx/m = 1730−18⁢π38⁢π−23= simplify −15⁢−68+15⁢π9⁢π−16→at 10 digits0.3401587472
Table 6.5.1(b) Calculation of the center of mass from first principles
Maple Solution - Coded
Density ρx,y
Define the density function.
ρ≔x2+y−1/22:
Total mass
Use the Int and value commands.
q≔Intρ,y=0..1−x2,x=−1..1
∫−11∫0−x2+1x2+y2−y+14ⅆyⅆx
m≔valueq
38⁢π−23
First Moments
q≔Intρ⋅y,y=0..1−x2,x=−1..1
∫−11∫0−x2+1x2+y−122⁢yⅆyⅆx
Mx≔valueq
1730−18⁢π
q≔Intρ⋅x,y=0..1−x2,x=−1..1
∫−11∫0−x2+1x2+y−122⁢xⅆyⅆx
My≔valueq
Coordinates of center of mass x&conjugate0;,y&conjugate0;
Apply the simplify and evalf commands.
CM≔Mym,Mxm
simplifyCM
0,−15⁢−68+15⁢π9⁢π−16
evalfCM
0.,0.3401587474
<< Previous Example Section 6.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document