Chapter 6: Applications of Double Integration
Section 6.5: First Moments
Example 6.5.5
Determine the coordinates of the center of mass for a semicircular lamina whose density is equal to the distance from the center of the circle, and whose radius is 1.
Solution
Mathematical Solution
Figure 6.5.5(a) shows the region R in red, and the surface ρ=r, in blue. The green dot represents the centroid x&conjugate0;,y&conjugate0;=0,32 π. The relevant calculations are tabulated to the left of the figure.
m=∫0π∫01r2 ⅆr ⅆθ = π/3
Mx=∫0π∫01r3sinθ ⅆr ⅆθ = 1/2
My=∫0π∫01r3cosθ ⅆr ⅆθ = 0
x&conjugate0;=My/m=0
y&conjugate0;=Mx/m=32 π
Figure 6.5.5(a) Centroid, R, and ρ=r
Maple Solution - Interactive
Table 6.5.5(a) contains a solution via the task template that implements the CenterOfMass command from the Student MultivariateCalculus package. The density is ρ=r.
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Center of Mass≻Polar
Center of Mass for Planar Region in Polar Coordinates
Density:
r
Region: r1θ≤r ≤r2θ,a≤θ≤b
r1θ
0
r2θ
1
a
b
π
Moments÷Mass:
Inert Integral - dr dθ
StudentMultivariateCalculusCenterOfMass, r=..,θ=..,coordinates=polarr, θ,output=integral
∫0π∫01r3⁢cos⁡θⅆrⅆθ∫0π∫01r2ⅆrⅆθ,∫0π∫01r3⁢sin⁡θⅆrⅆθ∫0π∫01r2ⅆrⅆθ
Explicit values for r&conjugate0; and θ&conjugate0;
StudentMultivariateCalculusCenterOfMass,r=..,θ=..,coordinates=polarr, θ
32⁢π,12⁢π
Plot:
StudentMultivariateCalculusCenterOfMass,r=..,θ=.., coordinates=polarr, θ,output=plot,caption=
Table 6.5.5(a) Calculation of center of mass via task template
The figure produced by the option "output = plot" has had constrained scaling imposed via the Context Panel for the graph. The graph itself shows the region R in red, and the function ρ=r in blue. The centroid is represented by the green dot.
The polar coordinates of the centroid are therefore r&conjugate0;,θ&conjugate0;=, which, in Cartesian coordinates would be r&conjugate0; cosθ&conjugate0;,r&conjugate0; sinθ&conjugate0;=0,32 π. In other words, the task template calculates the mass and first moments in Cartesian coordinates, but returns the center of mass in polar coordinates.
A solution from first principles is detailed in Table 6.5.5(b).
Obtain m, the total mass in region R
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻m
∫0π∫01r2 ⅆr ⅆθ = 13⁢π→assign to a namem
Obtain Mx, the total moments about the x-axis
Context Panel: Assign to a Name≻Mx
∫0π∫01r3 sinθ ⅆr ⅆθ = 12→assign to a nameMx
Obtain My, the total moments about the y-axis
Context Panel: Assign to a Name≻My
∫0π∫01r3 cosθ ⅆr ⅆθ = 0→assign to a nameMy
Obtain x&conjugate0;=My/m
My/m = 0
Obtain y&conjugate0;=Mx/m
Mx/m = 32⁢π
Table 6.5.5(b) Calculation of the centroid from first principles
Maple Solution - Coded
Total mass
Use the Int and value commands.
q≔Intr2,r=0..1,θ=0..π
∫0π∫01r2ⅆrⅆθ
m≔valueq
13⁢π
First Moments
q≔Intr3 sinθ,r=0..1,θ=0.. π
∫0π∫01r3⁢sin⁡θⅆrⅆθ
Mx≔valueq
12
q≔Intr3 cosθ,r=0..1,θ=0.. π
∫0π∫01r3⁢cos⁡θⅆrⅆθ
My≔valueq
Coordinates of centroid x&conjugate0;,y&conjugate0;
Mym,Mxm = 0,32⁢π
<< Previous Example Section 6.5 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document