Chapter 8: Applications of Triple Integration
Section 8.1: Volume
Example 8.1.1
Use an iterated triple integral to obtain the volume of the region R, the tetrahedron bounded by the planes x+3 y+z=5, x=3 y, x=0, z=0.
Solution
Mathematical Solution
Figure 8.1.1(a) shows the tetrahedron whose volume is obtained by iterating a triple integral in Cartesian coordinates in the order dz dy dx.
∫05∫05−x/3∫05−x−3 y1 dz dy dx = 12518
Figure 8.1.1(a) Tetrahedron
Maple Solution - Interactive
Since the iteration order can be taken as dz dy dx, the task template in Table 8.1.1(a), using the MultiInt command from the Student MultivariateCalculus package, applies.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Multiple Integration≻Cartesian 3-D
Iterated Triple Integrals in Cartesian Coordinates
Integrand:
1
Region: z1x,y≤z≤z2x,y,y1x≤y≤y2x,a≤x≤b
z1x,y
0
z2x,y
5−x−3 y
5−x−3⁢y
y1x
y2x
5−x/3
53−13⁢x
a
b
5
Inert Integral: dz dy dx
StudentMultivariateCalculusMultiInt,z=..,y=..,x=..,output=integral
∫05∫053−13⁢x∫05−x−3⁢y1ⅆzⅆyⅆx
Value:
StudentMultivariateCalculusMultiInt,z=..,y=..,x=..
12518
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,z=..,y=..,x=..,output=steps
∫05∫053−x3∫05−x−3⁢y1ⅆzⅆyⅆx=∫05∫053−x3zz=0..5−x−3⁢y|zz=0..5−x−3⁢yⅆyⅆx=∫05∫053−x35−x−3⁢yⅆyⅆx=∫055⁢y−x⁢y−32⁢y2y=0..53−x3|5⁢y−x⁢y−32⁢y2y=0..53−x3ⅆx=∫05253−5⁢x3−x⁢53−x3−3⁢53−x322ⅆx=25⁢x3−5⁢x23+x39+3⁢53−x332x=0..5|25⁢x3−5⁢x23+x39+3⁢53−x332x=0..5
Table 8.1.1(a) Task template implementing the MultiInt command iterating in the order dz dy dx
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Access the MultiInt command via the Context Panel
Type the integrand, 1.
Context Panel: Student Multivariate Calculus≻Integrate≻Iterated Fill in the fields of the two dialogs shown below.
Context Panel: Evaluate Integral
1→MultiInt∫05∫053−13⁢x∫05−x−3⁢y1ⅆzⅆyⅆx=12518
Table 8.1.1(b) provides a solution from first principles.
Calculus Palette: Iterated triple-integral template
Context Panel: Evaluate and Display Inline
∫05∫05−x/3∫05−x−3 y1 ⅆz ⅆy ⅆx = 12518
Table 8.1.1(b) Integration via first principles
Maple Solution - Coded
Table 8.1.1(c) provides a solution via the command the MultiInt command in the Student MultivariateCalculus package. This command recognizes the tetrahedron as a predefined region that is specified by the four vertices of the tetrahedron.
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
V≔0,0,0,5,0,0,0,5/3,0,0,0,5:MultiInt1,x,y,z=TetrahedronV,output=integral
5⁢∫01∫05−5⁢t∫0−53+53⁢t⁢x−5+5⁢t5−5⁢t1ⅆyⅆxⅆt
MultiInt1,x,y,z=TetrahedronV = 12518
Table 8.1.1(c) Integration over a tetrahedron
Table 8.1.1(d) obtains a more primitive solution via the MultiInt command in the Student MultivariateCalculus package. See Table 8.1.1(a) for an implementation of this command via a task template.
MultiInt1,z=0..5−x−3 y,y=0..5−x/3,x=0..5 = 12518
Table 8.1.1(d) MultiInt command iterating in the order dz dy dx
Table 8.1.1(e) implements the iterated integration via the top-level Int and int commands.
Int1,z=0..5−x−3 y,y=0..5−x/3,x=0..5=int1,z=0..5−x−3 y,y=0..5−x/3,x=0..5
∫05∫053−13⁢x∫05−x−3⁢y1ⅆzⅆyⅆx=12518
Table 8.1.1(e) Top-level Int and int commands
<< Chapter Overview Section 8.1 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document