Chapter 8: Applications of Triple Integration
Section 8.2: Average Value
Example 8.2.8
Obtain the average value of fr,θ,z=z/r2 over R, the region that is bounded below by the paraboloid z=x2+y2 and above by z=4 x. (See Example 8.1.18.)
Solution
Mathematical Solution
The average value of f over R is defined as ∫∫∫Rf dv∫∫∫R1 dv. For the given values of f and R, obtain
∫02⁢π∫04⁢cos⁡θ∫r24⁢r⁢cos⁡θz2r dz dr dθ∫02⁢π∫04⁢cos⁡θ∫r24⁢r⁢cos⁡θr dz dr dθ = 12809⁢π16 π = 809
Maple Solution - Interactive
Because the triple integral over R can be iterated in cylindrical coordinates in the order dz dr dθ, the task template in Table 8.2.8(a), implementing the FunctionAverage command from the Student MultivariateCalculus package, can be used.
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Average Value≻Cylindrical
Average Value of a Function in Cylindrical Coordinates
Integrand
z/r2
z2r2
Region: z1r,θ≤z≤z2r,θ,r1θ≤r≤r2θ,a≤θ≤b
z1r,θ
r2
z2r,θ
4 r cosθ
4⁢r⁢cos⁡θ
r1θ
0
r2θ
4 cosθ
4⁢cos⁡θ
a
b
2 π
2⁢π
Inert Integral: dz dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusFunctionAverage,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=integral
∫02⁢π∫04⁢cos⁡θ∫r24⁢r⁢cos⁡θz2rⅆzⅆrⅆθ∫02⁢π∫04⁢cos⁡θ∫r24⁢r⁢cos⁡θrⅆzⅆrⅆθ
Value
StudentMultivariateCalculusFunctionAverage,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z
809
Table 8.2.8(a) Solution by task template implementing the FunctionAverage command
To implement a solution from first principles, evaluate the integral of f over R and divide by the volume computed in Example 8.1.18. To integrate f over R, use the visualization task template in Table 8.2.8(b).
Tools≻Tasks≻Browse: Calculus - Multivariate≻Integration≻Visualizing Regions of Integration≻Cylindrical
Evaluate ∭RΨr,θ,z dv and Graph R
Volume Element dv
r dz dr dθ
r dz dθ dr
r dr dθ dz
r dr dz dθ
r dθ dr dz
r dθ dz dr
, where Ψ=
F=
G=
b=
f=
g=
a=
Table 8.2.8(b) Integration of f over R by visualization task template
Table 8.2.8(c) completes the solution from first principles.
Copy and paste the value of ∫∫∫Rf dv
Divide by the volume of R from Example 8.1.18
Context Panel: Evaluate and Display Inline
12809⁢π/16 π = 809
Table 8.2.8(c) Completion of the solution from first principles
Maple Solution - Coded
Initialize
Install the Student MultivariateCalculus package.
withStudent:-MultivariateCalculus:
Define the function f.
f≔z/r2:
Apply the FunctionAverage command from the Student MultivariateCalculus package
FunctionAveragef,z=r2..4 r cosθ,r=0..4 cosθ,θ=0..2 π,coordinates=cylindricalr,θ,z
From first principles, verify this result by integrating f over R and dividing by V, the volume of R.
Use the MultiInt command to obtain Q, the integral of f over R
Q≔MultiIntf,z=r2..4 r cosθ,r=0..4 cosθ,θ=0..2 π,coordinates=cylindricalr,θ,z
Q≔1280⁢π9
Use the MultiInt command to obtain V, the volume of R
V≔MultiInt1,z=r2..4 r cosθ,r=0..4 cosθ,θ=0..2 π,coordinates=cylindricalr,θ,z
V≔16⁢π
Divide Q by V
Q/V = 809
<< Previous Example Section 8.2 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document