Chapter 8: Applications of Triple Integration
Section 8.4: Moments of Inertia (Second Moments)
Example 8.4.6
If R, the region that lies between the paraboloids z=4−x2−y2 and z=3 x2+3 y2, and δr ,θ,z=r z cosθ/6 is the density in R, obtain the moments of inertia and the radii of gyration about the Cartesian coordinate-axes.
(See Example 8.1.22.)
Solution
Maple Solution - Interactive
Initialize
Context Panel: Assign Name
δ=r z cosθ/6→assign
The calculations for the moments of inertia are detailed in Table 8.4.8(a) where the iterated integrals are a modification of the contents of Table 8.1.20(c).
Context Panel: Evaluate and Display Inline
Context Panel: Approximate≻5 (digits)
Ix=∫02 π∫01∫3 r24−r2δ r2sin2θ+z2 r ⅆz ⅆr ⅆθ→assign
Ix = 45015215015⁢3→at 5 digits51.928
Iy=∫02 π∫01∫3 r24−r2δ r2cos2θ+z2 r ⅆz ⅆr ⅆθ→assign
Iy = 44996815015⁢3→at 5 digits51.908
Iz=∫02 π∫01∫3 r24−r2δ r2 r ⅆz ⅆr ⅆθ→assign
Iz = 184105⁢3→at 5 digits3.0353
Table 8.4.8(a) Calculations for the moments of inertia
The total mass m and the radii of gyration are given in Table 8.4.8(b).
m=∫02 π∫01∫3 r24− r2δ r ⅆz ⅆr ⅆθ→assign
m = 13635⁢3
kx=Ix/m→assign
kx = 17293⁢410369817→at 5 digits2.7778
ky=Iy/m→assign
ky = 17293⁢410202078→at 5 digits2.7771
kz=Iz/m→assign
kz = 151⁢1173→at 5 digits0.67155
Table 8.4.8(b) Radii of gyration
Maple Solution - Coded
Define the density.
δ≔r z cosθ/6:
Obtain the moments of inertia
Qx≔Intr δ r2sin2θ+z2,z=3 r2..4− r2,r=0..1,θ=0..2 π
∫02⁢π∫01∫3⁢r2−r2+4r2⁢z⁢cos⁡16⁢θ⁢r2⁢sin⁡θ2+z2ⅆzⅆrⅆθ
Ix≔valueQx
45015215015⁢3
Qy≔Intr δ r2cos2θ+z2,z=3 r2..4− r2,r=0..1,θ=0..2 π
∫02⁢π∫01∫3⁢r2−r2+4r2⁢z⁢cos⁡16⁢θ⁢r2⁢cos⁡θ2+z2ⅆzⅆrⅆθ
Iy≔valueQy
44996815015⁢3
Qz≔Intr δ r2,z=3 r2..4− r2,r=0..1,θ=0..2 π
∫02⁢π∫01∫3⁢r2−r2+4r4⁢z⁢cos⁡16⁢θⅆzⅆrⅆθ
Iz≔valueQz
184105⁢3
Obtain the total mass m
M≔Intr δ,z=3 r2..4− r2,r=0..1,θ=0..2 π
∫02⁢π∫01∫3⁢r2−r2+4r2⁢z⁢cos⁡16⁢θⅆzⅆrⅆθ
m≔valueM
13635⁢3
Obtain the radii of gyration
kx≔Ix/m
17293⁢410369817
ky≔Iy/m
17293⁢410202078
kz≔Iz/m
151⁢1173
<< Previous Example Section 8.4 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document