Chapter 9: Vector Calculus
Section 9.6: Surface Integrals
Example 9.6.13
Obtain the flux of the field F=x i+y j+z k through the surface defined parametrically by the equations xu,v=u+v,yx,v=u−v,zu,v=u v and the bounds u∈0,1, v∈0,u.
Solution
Mathematical Solution
Define the surface parametrically through the position vector R=u+vu−vu v.
Then a unit normal on the surface is N=Ru×RvRu×Rv = 14+2 u2+2 v2 u+vv−u−2,
and dσ, the element of surface area, is Ru×RvdA=4+2 u2+2 v2dA, where dA=du dv or dv du.
The integrand of the flux integral is then F·N dσ with F evaluated on the surface. The flux is given by
∫01∫0u2 u v dv du=1/4
Maple Solution - Interactive
Table 9.6.13(a) provides a solution via task template.
Tools≻Tasks≻Browse: Calculus - Vector≻Integration≻Flux≻3-D≻Through a Parametric Surface
Flux through a Parametrically Defined Surface
For the Vector Field:
Select Coordinate SystemCartesian [x,y,z]Cartesian - othercylindricalsphericalbipolarcylindricalbisphericalcardioidalcardioidcylindricalcasscylindricalconicalellcylindricalhypercylindricalinvcasscylindricallogcylindricallogcoshcylindricaloblatespheroidalparaboloidalparacylindricalprolatespheroidalrosecylindricalsixspheretangentcylindricaltangentspheretoroidal
Select Coordinate SystemCartesiancylindricalsphericalbipolarcylindricalbisphericalcardioidalcardioidcylindricalcasscylindricalconicalellcylindricalhypercylindricalinvcasscylindricallogcylindricallogcoshcylindricaloblatespheroidalparaboloidalparacylindricalprolatespheroidalrosecylindricalsixspheretangentcylindricaltangentspheretoroidal
Table 9.6.13(a) Solution by task template
Table 9.6.13(b) provides the solution from first principles.
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Define the parametric surface via the position vector R
Context Panel: Assign to a Name≻R
u+v,u−v,u v→assign to a nameR
Obtain the vector Ru×Rv, its length, and the unit normal N
Calculus palette: Partial differentiation operator Context Panel: Evaluate and Display Inline
Context Panel: Student Multivariate Calculus≻Normalize
Context Panel: Simplify≻Simplify
Context Panel: Assign to a Name≻N
∂∂ u R×∂∂ v R = →normalize = simplify →assign to a nameN
Evaluate F on the parametric surface
Context Panel: Evaluate and Display Inline
Context Panel: Equate
Context Panel: Assign to a Name≻S
x,y,z,R = →equatex=u+v,y=u−v,z=u⁢v→assign to a nameS
Expression palette: Evaluation template
Context Panel: Evaluate and Display inline
Context Panel: Assign to a Name≻F
x,y,zx=a|f(x)S = →assign to a nameF
Form and evaluate the flux integral
Calculus palette: Iterated double-integral
Common Symbols palette: Dot-product operator
∫01∫0uF·N 4+2 u2+2 v2 ⅆv ⅆu = 14
Table 9.6.13(b) Solution from first principles
Note that the norm of N can also be obtained with the typeset notation ∂∂ u R×∂∂ v R.
Maple Solution - Coded
Table 9.6.13(c) provides a solution based on the Flux command in the Student VectorCalculus package.
Install the Student VectorCalculus package.
withStudent:-VectorCalculus:
Use the VectorField command to define F.
F≔VectorFieldx,y,z:
Use the Flux command to form and evaluate the flux of F through the parametric surface.
FluxF,Surfaceu+v,u−v,u v,u=0..1,v=0..u,output=integral
∫01∫0uu+v2+u−v⁢−u+v−2⁢u⁢vⅆvⅆu
FluxF,Surfaceu+v,u−v,u v,u=0..1,v=0..u
14
Table 9.6.13(c) Flux computed with the Flux command
Table 9.6.13(d) provides a solution from first principles.
Set the display of vectors with the BasisFormat command.
BasisFormatfalse:
Define the surface as the position vector R.
R≔u+v,u−v,u v:
Use the diff, CrossProduct, and Norm commands to obtain Ru×Rv.
dsig≔NormCrossProductdiffR,u,diffR,v
2⁢u2+2⁢v2+4
Use the diff, CrossProduct, and Normalize commands to obtain Ru×Rv.
N≔NormalizeCrossProductdiffR,u,diffR,v
Use the Equate command to form the set of substitution equations for evaluating F on the surface.
Use the DotProduct command to obtain F·N.
Use the eval and Equate commands to evaluate F·N on the surface.
Apply the simplify command to the integrand.
Use the top-level Int and int commands to form and evaluate the flux integral.
IntsimplifyevalDotProductF,N dsig,EquateF,R,v=0..u,u=0..1= :-intsimplifyevalDotProductF,N dsig,EquateF,R,v=0..u,u=0..1
∫01∫0u2⁢u⁢vⅆvⅆu=14
Table 9.6.13(d) Solution from first principles
To evaluate the flux integral via the int command, prefix it with "colon dash" to force Maple to use the top-level version, not the modified version from the Student VectorCalculus package.
<< Previous Example Section 9.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document