Chapter 9: Vector Calculus
Section 9.6: Surface Integrals
Example 9.6.14
Obtain the flux of the field F=x i+y j+z k through the surface z=x2+y2 defined over the disk with center at x,y=1,2 and with radius 3.
Solution
Mathematical Solution
A normal on the surface f=x2+y2 is −fx i−fy j+k, and a unit normal is
N=11+4 x2+4 y2−2 x−2 y1
The element of surface area is dσ=1+fx2+fy2 dA. The square root is 1+4 x2+4 y; it is convenient to call it "dsig". The integrand of the flux integral is F·N dσ, but instead, write
F·N dsig=xyz·(11+4 x2+4 y2−2 x−2 y1)1+4 x2+4 y2 = −2 x2−2 y2+z
which becomes −x2−y2 on the surface z=f=x2+y2.
Change coordinates to x=1+r cosθ,y=2+r sinθ, a transformation whose Jacobian is r.
The flux integral is then
−∫03∫02 πr 1+r cosθ2+2+r sinθ2 dθ dr =−1712 π
Maple Solution - Interactive
Table 9.6.14(a) provides a solution via task template.
Tools≻Tasks≻Browse: Calculus - Vector≻Integration≻Flux≻3-D≻Through a Surface Defined over a Disk
Flux through a Surface Defined over a Disk
For the Vector Field:
Select Coordinate SystemCartesian [x,y,z]Cartesian - othercylindricalsphericalbipolarcylindricalbisphericalcardioidalcardioidcylindricalcasscylindricalconicalellcylindricalhypercylindricalinvcasscylindricallogcylindricallogcoshcylindricaloblatespheroidalparaboloidalparacylindricalprolatespheroidalrosecylindricalsixspheretangentcylindricaltangentspheretoroidal
Table 9.6.14(a) Solution by task template
Table 9.6.14(b) provides a solution from first principles.
Initialize
Tools≻Load Package: Student Multivariate Calculus
Loading Student:-MultivariateCalculus
Define the vector field F
Context Panel: Assign to a Name≻F
x,y,z→assign to a nameF
Define the surface
Context Panel: Assign to a Name≻f
x2+y2→assign to a namef
Obtain N, a unit normal on the surface
Calculus palette: Partial-differentiation operator
Context Panel: Evaluate and Display Inline
Context Panel: Student Multivariate Calculus≻Normalize≻
Context Panel: Assign to a Name≻N
−∂∂ x f,−∂∂ y f,1 = →normalize →assign to a nameN
Obtain dsig=1+fx2+fy2
Context Panel: Assign to a Name≻dsig
1+∂∂ x f2+∂∂ y f2 = 4⁢x2+4⁢y2+1→assign to a namedsig
Form F·N dsig and evaluate it on the surface
Expression palette: Evaluation template Common Symbols palette: Dot-product operator Press the Enter key.
Context Panel: Simplify≻Simplify
F·N dsigx=a|f(x)z=f
−2⁢x24⁢x2+4⁢y2+1−2⁢y24⁢x2+4⁢y2+1+x2+y24⁢x2+4⁢y2+1⁢4⁢x2+4⁢y2+1
= simplify
−x2−y2
Define a change of coordinates and obtain its Jacobian
Context Panel: Assign to a Name≻X
1+r cosθ→assign to a nameX
Context Panel: Assign to a Name≻Y
2+r sinθ→assign to a nameY
Write the sequence of names for the new coordinates. Context Panel: Evaluate and Display Inline
Context Panel: Jacobian Matrix≻[r, theta]
Context Panel: Standard Operations≻Determinant
X,Y = 1+r⁢cos⁡θ,2+r⁢sin⁡θ→Jacobian →determinantcos⁡θ2⁢r+r⁢sin⁡θ2= simplify r
Form and evaluate the flux integral
Calculus palette: Iterated double-integral operator
−∫03∫02 πr X2+Y2 ⅆθ ⅆr = −1712⁢π
Table 9.6.14(b) Solution from first principles
Maple Solution - Coded
Table 9.6.14(c) provides a solution via the Flux command.
Install the Student VectorCalculus package.
withStudent:-VectorCalculus:
Define F with the VectorField command.
F≔VectorFieldx,y,z:
Form and evaluate the flux integral with the Flux command
FluxF,Surfacex,y,x2+y2,x,y=Circle1,2,3,r,θ,output=integral
∫03∫02⁢πr⁢−r2−2⁢r⁢cos⁡θ−4⁢r⁢sin⁡θ−5ⅆθⅆr
FluxF,Surfacex,y,x2+y2,x,y=Circle1,2,3,r,θ
−1712⁢π
Table 9.6.14(c) Solution via the Flux command
Table 9.6.14(d) contains a solution crafted from first principles.
Set the display of vectors with the BasisFormat command.
BasisFormatfalse:
Let f define the surface.
f≔x2+y2:
Use the diff command for obtaining the components of N, and the Normalize command for obtaining a unit normal.
N≔Normalize−difff,x,−difff,y,1
Differentiate via the diff command.
dsig≔1+difff,x2+difff,y2
4⁢x2+4⁢y2+1
Obtain F·N dsig and evaluate it on the surface
Use the DotProduct command to compute F·N.
Use the eval command to replace z with f=x2+y2, then apply the simplify command.
q≔simplifyevalDotProductF,N dsig,z=f = −x2−y2
Change coordinates
Make the appropriate substitution via the eval command.
Use the Jacobian and simplify commands to obtain the Jacobian of the transformation.
Q≔evalq,x=1+r cosθ,y=2+r sinθ = −1+r⁢cos⁡θ2−2+r⁢sin⁡θ2
simplifyJacobian1+r cosθ,2+r sinθ,r,θ,determinant=true2 = r
Use the Int command to form the flux integral and int to evaluate it.
Intr Q, θ=0..2 π,r=0..3= :-intr Q,θ=0..2 π,r=0..3
∫03∫02⁢πr⁢−1+r⁢cos⁡θ2−2+r⁢sin⁡θ2ⅆθⅆr=−1712⁢π
Table 9.6.14(d) Solution from first principles
Note the use of the "colon dash" operator prefixed to the int command. This forces the top-level version instead of the modified version in the Student VectorCalculus package.
<< Previous Example Section 9.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document