coeftayl - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


coeftayl

coefficient of (multivariate) expression

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

coeftayl(expr, eqn, k)

Parameters

expr

-

arbitrary expression

eqn

-

equation of the form x=α where x is a name (univariate case) or list (multivariate case)

k

-

non-negative integer (univariate case) or a list of non-negative integers (multivariate case)

Description

• 

This function computes a coefficient in the (multivariate) Taylor series representation of expr without forming the series (it uses differentiation and substitution).  Often, expr is a polynomial.

• 

The one-variable and several-variable cases are distinguished by the types of the input parameters.

• 

UNIVARIATE CASE: x is a name and k a non-negative integer.

  

In this case, the value returned is the coefficient of xαk in the Taylor series expansion of expr about x=α.  This is equivalent to executing  coefftaylorexpr,x=α,k+1,xα,k  but it is more efficient (because only a single term is computed).

• 

MULTIVARIATE CASE: x is a nonempty list x1,,xv of indeterminates appearing in expr and α is a list α1,,αv specifying the point of expansion with respect to the given indeterminates;  k is a list k1,,kv of non-negative integers corresponding to elements in x and α.

  

In this case, the value returned is the coefficient of the term specified by the monomial

  

 

x1α1k1xvαvkv

  

in the multivariate Taylor series expansion of expr about the point x=α.  If k is the list of zeros then the value returned is the value resulting from substituting x=α into expr.

Examples

p2x2+3y35

p3y3+2x25

(1)

coeftaylp,x=0,2

2

(2)

coeftaylp,x=1,1

4

(3)

taylorp,x=1

3y33+4x1+2x12

(4)

q3ax+12+sinax2yy2x+xa

q3ax+12+sinax2yy2x+xa

(5)

coeftaylq,x=1,2

sinay+3a

(6)

coeftaylq,x=1,1

2sinayy2+1

(7)

taylorq,x=1

sinay+y21a+2sinayy2+1x+1+sinay+3ax+12

(8)

coeftaylq,x,y=0,0,0,0

2a

(9)

coeftaylq,x,y=0,0,2,1

sina

(10)

mtaylorq,x,y

2a+6a+1x+3ax2+sinax2yy2x

(11)

coeftaylq,x,y=0,1,1,1

−2

(12)

coeftaylq,x,y=0,1,2,1

sina

(13)

mtaylorq,x=0,y=1

2a+6ax+sina+3ax22y1x+sinax2y1y12x

(14)

See Also

coeff

coeffs

mtaylor

taylor