linalg(deprecated)/linsolve - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : linalg(deprecated)/linsolve

linalg(deprecated)

  

linsolve

  

solution of linear equations

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

linsolve(A, b, 'r', v)

linsolve(A, B, 'r', v)

Parameters

A

-

matrix

b

-

vector

B

-

matrix

r

-

(optional) name

v

-

(optional) name

Description

• 

Important: The linalg package has been deprecated. Use the superseding packages LinearAlgebra[LinearSolve], instead.

  

- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.

• 

The function linsolve(A, b) finds the vector x which satisfies the matrix equation A\x\=\b. If A has n rows and m columns, then vectdimb must be n and vectdimx will be m, if a solution exists.

• 

If Ax=b has no solution or if Maple cannot find a solution, then the null sequence NULL is returned. If Ax=b has many solutions, then the result will use global names (see below) to describe the family of solutions parametrically.

• 

The call linsolve(A, B) finds the matrix X which solves the matrix equation AX=B where each column of X satisfies AcolX,i=colB,i . If AX=B has does not have a unique solution, then NULL is returned.

• 

The optional third argument is a name which will be assigned the rank of A.

• 

The optional fourth argument allows you to specify the seed for the global names used as parameters in a parametric solution.  If there is no fourth argument, the default, then the global names _t[1], _t[2], _t[3], ... will be used in the vector case, _t[1][1], _t[1][2], _t[2][1], ... in the matrix case (where _t[1][i] is used for the first column, _t[2][i] for the second, etc).  This is particularly useful when programming with linsolve.  If you declare v as a local variable and then call linsolve with fourth argument v, the resulting parameters (v[1], v[2], ...) will be local to the procedure.

• 

An inert linear solver, Linsolve, is known to the mod function and can be used to solve systems of linear equations (matrix equations) modulo an integer m.

• 

The command with(linalg,linsolve) allows the use of the abbreviated form of this command.

Examples

Important: The linalg package has been deprecated. Use the superseding packages LinearAlgebra[LinearSolve], instead.

withlinalg:

Amatrix1,2,1,3:

bvector1,2:

linsolveA,b

7−3

(1)

Bmatrix1,1,2,1:

linsolveA,B

71−30

(2)

Amatrix5,7,0,0:

bvector3,0:

linsolveA,b,r

357_t15_t1

(3)

linsolveA,b,r,v

357v15v1

(4)

Amatrix5,7,10,14

A571014

(5)

Bmatrix3,0,6,0

B3060

(6)

linsolveA,B

357_t1157_t215_t11_t21

(7)

See Also

linalg(deprecated)[leastsqrs]

LinearAlgebra

LinearAlgebra[LinearSolve]

Linsolve

solve