Jacobi ODEs
Description
Examples
The general form of the Jacobi ODE is given by the following:
Jacobi_ode := diff(y(x),x,x)*x*(1-x) = (g-(a+1)*x)*diff(y(x),x)+n*(a+n)*y(x);
Jacobi_ode≔ⅆ2ⅆx2y⁡x⁢x⁢1−x=g−a+1⁢x⁢ⅆⅆxy⁡x+n⁢a+n⁢y⁡x
where n is an integer. See Iyanaga and Kawada, "Encyclopedic Dictionary of Mathematics", p. 1480.
The solution to this type of ODE can be expressed in terms of the hypergeometric function; see hypergeom.
with⁡DEtools,odeadvisor
odeadvisor
odeadvisor⁡Jacobi_ode
_Jacobi
dsolve⁡Jacobi_ode
y⁡x=c__1⁢hypergeom⁡−1−a2−a2+−4⁢n+4⁢a−4⁢n2+42,−1−a2+a2+−4⁢n+4⁢a−4⁢n2+42,−g,x+c__2⁢x1+g⁢hypergeom⁡−a2−a2+−4⁢n+4⁢a−4⁢n2+42+g,−a2+a2+−4⁢n+4⁢a−4⁢n2+42+g,2+g,x
See Also
DEtools
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document