Solving Homogeneous ODEs of Class C
Description
Examples
The general form of the homogeneous equation of class C is given by the following:
homogeneousC_ode := diff(y(x),x)=F((a*x+b*y(x)+c)/(r*x+s*y(x)+t));
homogeneousC_ode≔ⅆⅆxy⁡x=F⁡a⁢x+b⁢y⁡x+cr⁢x+s⁢y⁡x+t
where F is an arbitrary function of its argument. See Differentialgleichungen, by E. Kamke, p. 19. This type of ODE can be solved in a general manner by dsolve and the coefficients of the infinitesimal symmetry generator are also found by symgen.
with⁡DEtools,odeadvisor,symgen
odeadvisor,symgen
odeadvisor⁡homogeneousC_ode
_homogeneous,class C,_dAlembert
A pair of infinitesimals for the homogeneousC_ode
symgen⁡homogeneousC_ode
_ξ=a⁢s⁢x−b⁢r⁢x−b⁢t+s⁢ca⁢s−b⁢r,_η=a⁢s⁢y−b⁢r⁢y+a⁢t−c⁢ra⁢s−b⁢r
The general solution for this ODE
ans≔dsolve⁡homogeneousC_ode
ans≔y⁡x=a⁢t−c⁢r+RootOf⁡∫` `_Z1F⁡_a⁢b−a_a⁢s−r+_aⅆ_a+ln⁡x⁢a⁢s−b⁢r−b⁢t+s⁢c+c__1⁢x⁢a⁢s−b⁢r−b⁢t+s⁢c−a⁢s+b⁢r
Explicit or implicit results can be tested, in principle, using odetest
odetest⁡ans,homogeneousC_ode
0
See Also
DEtools
odeadvisor
dsolve
quadrature
linear
separable
Bernoulli
exact
homogeneous
homogeneousB
homogeneousC
homogeneousD
homogeneousG
Chini
Riccati
Abel
Abel2A
Abel2C
rational
Clairaut
dAlembert
sym_implicit
patterns
odeadvisor,types
Download Help Document