BernsteinBasis - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : BernsteinBasis

BernsteinBasis

Bernstein polynomials on an interval

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

BernsteinBasis(k, n, a, b, x)

Parameters

k

-

algebraic expression; the index

n

-

algebraic expression; the degree

a

-

algebraic expression; left end of interval

b

-

algebraic expression; right end of interval

x

-

algebraic expression; the argument

Description

• 

BernsteinBasisk,n,a,b,x=nkbxnkxakban defines the kth Bernstein polynomial of degree n which is nonnegative on the interval a,b.

• 

At present, this can only be evaluated in Maple by prior use of the object-oriented representation obtained by P:=convert(p,MatrixPolynomialObject,x) and subsequent call to P:-Value(<x-value>), which uses the de Casteljau algorithm to evaluate the polynomial p.

Examples

p3BernsteinBasis0&comma;4&comma;0&comma;1&comma;x+5BernsteinBasis2&comma;4&comma;0&comma;1&comma;x+7BernsteinBasis4&comma;4&comma;0&comma;1&comma;x

p3BernsteinBasis0&comma;4&comma;0&comma;1&comma;x+5BernsteinBasis2&comma;4&comma;0&comma;1&comma;x+7BernsteinBasis4&comma;4&comma;0&comma;1&comma;x

(1)

Pconvertp&comma;MatrixPolynomialObject&comma;x

PRecordValue=Defaultvalue&comma;Variable=x&comma;Degree=4&comma;Coefficient=coe&comma;Dimension=1&comma;1&comma;Basis=BernsteinBasis&comma;BasisParameters=4&comma;0&comma;1&comma;IsMonic=mon&comma;OutputOptions=shape=&comma;storage=rectangular&comma;order=Fortran_order&comma;fill=0&comma;attributes=

(2)

P:-Degree

4

(3)

Note that the result returned by convert(...,MatrixPolynomialObject) represents a matrix polynomial; hence these results are 1 by 1 matrices.

P:-Value0

3

(4)

P:-Value1

7

(5)

P:-Value0.3

2.100000000

(6)

factorP:-Valuet1,1

40t472t3+48t212t+3

(7)

See Also

convert/MatrixPolynomialObject

LagrangeBasis

LinearAlgebra[CompanionMatrix]

NewtonBasis

OrthogonalSeries

PochhammerBasis

type/MatrixPolynomialObject