BernsteinBasis
Bernstein polynomials on an interval
Calling Sequence
Parameters
Description
Examples
BernsteinBasis(k, n, a, b, x)
k
-
algebraic expression; the index
n
algebraic expression; the degree
a
algebraic expression; left end of interval
b
algebraic expression; right end of interval
x
algebraic expression; the argument
BernsteinBasisk,n,a,b,x=nkb−xn−k⁢x−akb−an defines the kth Bernstein polynomial of degree n which is nonnegative on the interval a,b.
At present, this can only be evaluated in Maple by prior use of the object-oriented representation obtained by P:=convert(p,MatrixPolynomialObject,x) and subsequent call to P:-Value(<x-value>), which uses the de Casteljau algorithm to evaluate the polynomial p.
p≔3⁢BernsteinBasis⁡0,4,0,1,x+5⁢BernsteinBasis⁡2,4,0,1,x+7⁢BernsteinBasis⁡4,4,0,1,x
P≔convert⁡p,MatrixPolynomialObject,x
P≔Record⁡Value=Defaultvalue,Variable=x,Degree=4,Coefficient=coe,Dimension=1,1,Basis=BernsteinBasis,BasisParameters=4,0,1,IsMonic=mon,OutputOptions=shape=,storage=rectangular,order=Fortran_order,fill=0,attributes=
P:-Degree⁡
4
Note that the result returned by convert(...,MatrixPolynomialObject) represents a matrix polynomial; hence these results are 1 by 1 matrices.
P:-Value⁡0
3
P:-Value⁡1
7
P:-Value⁡0.3
2.100000000
factor⁡P:-Value⁡t1,1
40⁢t4−72⁢t3+48⁢t2−12⁢t+3
See Also
convert/MatrixPolynomialObject
LagrangeBasis
LinearAlgebra[CompanionMatrix]
NewtonBasis
OrthogonalSeries
PochhammerBasis
type/MatrixPolynomialObject
Download Help Document