ComplexBox
Predicates
predicates for ComplexBox objects
IsZero
test whether a ComplexBox object is zero
HasZero
test whether a ComplexBox object contains zero
IsOne
test whether a ComplexBox object is one
IsReal
test whether a ComplexBox object is real
IsExact
test whether a ComplexBox object is exact
IsInteger
test whether a ComplexBox object is an integer
HasInteger
test whether a ComplexBox object contains an integer
IsFinite
test whether a ComplexBox object is finite
IsInfinity
test whether a ComplexBox object is infinity
IsUndefined
test whether a ComplexBox object is undefined
Equal
test whether two ComplexBox objects are equal
Eq
NotEq
test whether two ComplexBox objects are not equal
Overlaps
test whether two ComplexBox objects overlap
Contains
test whether a ComplexBox object contains another
Calling Sequence
Parameters
Description
Examples
Compatibility
IsZero( b )
HasZero( b )
IsOne( b )
IsReal( b )
IsExact( b )
IsInteger( b )
HasInteger( b )
IsFinite( b )
IsInfinity( b )
IsUndefined( b )
Equal( b1, b2 )
Eq( b1, b2 )
NotEq( b1, b2 )
Overlaps( b1, b2 )
Contains( b1, b2 )
b
-
ComplexBox object
b1
b2
precopt
(optional) equation of the form precision = n, where n is a positive integer
Each ComplexBox object defines a number of predicates that can be used to query various properties of the box.
Predicates may be further sub-divided into unary predicates (of a single ComplexBox object) or binary (for comparing two ComplexBox objects).
The following table describes briefly the defined unary predicates.
Predicate
returns true if the ComplexBox represents an exact zero (centers and radii are both 0)
returns true if the ComplexBox contains zero
returns true if the ComplexBox represents 1 exactly
returns true if the ComplexBox represents a real number (i.e, imaginary part is an exact zero)
returns true if the ComplexBox has zero radii
returns true if the ComplexBox has zero radii and integer center
returns true if the ComplexBox contains an integer
returns true if the ComplexBox has finite real and imaginary parts
returns true if the ComplexBox is a complex infinity
returns true if the ComplexBox is an undefined
The binary predicates (comparing two ComplexBox objects) that are defined are described briefly in the following table.
returns true if its arguments are identical as boxes
returns true if its arguments are "mathematically equal"
returns true if its arguments are not "mathematically equal"
returns true if its arguments have non-empty intersection
returns true if the first argument is entirely contained in the second
Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.
IsZero⁡ComplexBox⁡0
true
IsZero⁡ComplexBox⁡0.
IsZero⁡ComplexBox⁡0.⁢I
IsZero⁡ComplexBox⁡1.×10−40
false
IsZero⁡ComplexBox⁡1.×10−40⁢I
HasZero⁡ComplexBox⁡RealBox⁡2.3,1.×10−20,RealBox⁡0
HasZero⁡ComplexBox⁡RealBox⁡0.001,0.002,RealBox⁡0
IsOne⁡ComplexBox⁡1
IsOne⁡ComplexBox⁡RealBox⁡1,1.×10−30
IsOne⁡ComplexBox⁡1.0+0.⁢I
IsOne⁡ComplexBox⁡1.0−0.⁢I
IsReal⁡ComplexBox⁡2.3
IsReal⁡ComplexBox⁡2.3+1.×10−40⁢I
IsReal⁡ComplexBox⁡RealBox⁡2.3,1.×10−20
IsReal⁡ComplexBox⁡RealBox⁡2.3,1.×10−20,RealBox⁡0
IsReal⁡ComplexBox⁡RealBox⁡2.3,1.×10−20,RealBox⁡0,1.×10−30
IsExact⁡ComplexBox⁡2.3+5.1⁢I
IsExact⁡ComplexBox⁡RealBox⁡2.3,1.×10−40,RealBox⁡5.1
IsExact⁡ComplexBox⁡RealBox⁡2.3,RealBox⁡5.1,1.×10−30
IsExact⁡ComplexBox⁡RealBox⁡2.3,1.×10−20,RealBox⁡5.1,1.×10−30
IsExact⁡ComplexBox⁡RealBox⁡2.3,RealBox⁡5.1
IsInteger⁡ComplexBox⁡4
IsInteger⁡ComplexBox⁡RealBox⁡4
This returns false because it is not exact:
IsInteger⁡ComplexBox⁡RealBox⁡4,1.×10−20
IsInteger⁡ComplexBox⁡4⁢I
HasInteger⁡ComplexBox⁡RealBox⁡1.001,0.002,RealBox⁡0
HasInteger⁡ComplexBox⁡RealBox⁡0.5,RealBox⁡1.001,0.002
IsFinite⁡ComplexBox⁡2+3⁢I
IsFinite⁡ComplexBox⁡2+∞⁢I
IsFinite⁡ComplexBox⁡−Float⁡∞−3⁢I
IsUndefined⁡ComplexBox⁡Float⁡undefined−I⁢Float⁡undefined
IsUndefined⁡ComplexBox⁡Float⁡∞−I⁢Float⁡undefined
IsUndefined⁡ComplexBox⁡Float⁡undefined+I⁢Float⁡∞
IsUndefined⁡ComplexBox⁡RealBox⁡0,∞,RealBox⁡2.3
IsInfinity⁡ComplexBox⁡Float⁡∞−3⁢I
IsInfinity⁡ComplexBox⁡−Float⁡∞+3.2⁢I
IsInfinity⁡ComplexBox⁡Float⁡∞+I⁢Float⁡∞
IsInfinity⁡ComplexBox⁡Float⁡∞−I⁢Float⁡∞
IsInfinity⁡ComplexBox⁡−Float⁡∞+I⁢Float⁡∞
IsInfinity⁡ComplexBox⁡−Float⁡∞−I⁢Float⁡∞
IsInfinity⁡ComplexBox⁡RealBox⁡0,∞,RealBox⁡0,∞
The ComplexBox[Predicates], ComplexBox:-IsZero, ComplexBox:-HasZero, ComplexBox:-IsOne, ComplexBox:-IsReal, ComplexBox:-IsExact, ComplexBox:-IsInteger, ComplexBox:-HasInteger, ComplexBox:-IsFinite, ComplexBox:-IsInfinity, ComplexBox:-IsUndefined, ComplexBox:-Equal, ComplexBox:-Eq, ComplexBox:-NotEq, ComplexBox:-Overlaps and ComplexBox:-Contains commands were introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
RealBox
RealBox[BinaryPredicates]
RealBox[UnaryPredicates]
Download Help Document