EmbeddingLayer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning

  

EmbeddingLayer

  

embedding layer

 

Calling Sequence

Parameters

Options

Description

Details

Examples

Compatibility

Calling Sequence

EmbeddingLayer(inputdim,outputdim,opts)

Parameters

inputdim, outputdim

-

positive integers

opts

-

(optional) one or more keyword options described below

Options

• 

inputlength : positive integer or the symbol auto

  

Length of the generated Tensor.

  

With the default value auto, the shape is inferred. If inference is not possible, an error is issued.

Description

• 

EmbeddingLayer(inputdim,outputdim,opts) creates an embedding neural network layer with input dimension inputdim and output dimension outputdim.

• 

This function is part of the DeepLearning package, so it can be used in the short form EmbeddingLayer(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[EmbeddingLayer](..).

Details

• 

The implementation of EmbeddingLayer uses tf.keras.layers.Embedding from the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.layers.Embedding for more information.

Examples

withDeepLearning

AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros

(1)

modelSequentialEmbeddingLayer1000,64,LSTMLayer128,DenseLayer10

modelDeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7ff2731bc550>

(2)

model:-Compile

Compatibility

• 

The DeepLearning[EmbeddingLayer] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

DeepLearning Overview