SoftmaxLayer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning

  

SoftmaxLayer

  

softmax layer

 

Calling Sequence

Parameters

Options

Description

Details

Examples

Compatibility

Calling Sequence

SoftmaxLayer(dim, opts)

Parameters

dim

-

positive integer

opts

-

one or more options as specified below

Options

• 

inputshape : list of integers or the symbol auto

  

Shape of the input Tensor, not including the batch axis.

  

With the default value auto, the shape is inferred. If inference is not possible, an error is issued.

  

This option need only be specified when this layer is the first in a Sequential model.

Description

• 

SoftmaxLayer(dim, opts) creates a softmax neural network layer. The input dim specifies the (zero-based) dimension of the along which the softmax normalization is applied.

• 

This function is part of the DeepLearning package, so it can be used in the short form SoftmaxLayer(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[SoftmaxLayer](..).

Details

• 

The implementation of SoftmaxLayer uses tf.keras.layers.Softmax from the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.layers.Softmax for more information.

Examples

withDeepLearning

AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros

(1)

modelSequentialSoftmaxLayer1

modelDeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7fa394e87750>

(2)

model:-Compile

Compatibility

• 

The DeepLearning[SoftmaxLayer] command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

DeepLearning Overview

DeepLearning,Tensor,Softmax