LieAlgebras[CartanSubalgebra] - find a Cartan subalgebra of a Lie algebra
Calling Sequences
CartanSubalgebra()
CartanSubalgebra(alg)
CartanSubalgebra(N)
Parameters
alg - name or string, the name of an initialized Lie algebra
N - a list of vectors, defining a nilpotent subalgebra
Description
Examples
Let 𝔤 be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is, nor𝔥 = 𝔥 . If g is a semi-simple Lie algebra, then every Cartan subalgebra h is Abelian and adx (see Adjoint) is a semi-simple linear transformation for every x ∈𝔥 (that is, adx is diagonalizable over C). Cartan subalgebras are not unique. However, if g is a semi-simple Lie algebra, then any two Cartan subalgebras of g are related by an automorphism of g Let n be a nilpotent subalgebra of g and let F𝔫 ={y ∈𝔤 | adxry =0} be the generalized null space of n. Then there always exists a Cartan subalgebra 𝔥⊆ F𝔫. If x ∈𝔤 is a regular element, then the generalized null space of x is a Cartan subalgebra.
The procedure CartanSubalgebra returns a list of vectors whose span is a Cartan subalgebra.
The procedure CartanSubalgebra implements the algorithm for calculating Cartan subalgebras presented in W. A. De Graaf: Lie Algebras: Theory and Algorithms.
with⁡DifferentialGeometry:with⁡LieAlgebras:with⁡Library:
Example 1
We calculate the Cartan subalgebra for sl3, the 8-dimensional Lie algebra of 3x3 trace-free matrices. The structure equations are obtained using the SimpleLieAlgebraData command.
L≔SimpleLieAlgebraData⁡sl(3),sl3,labelformat=gl,labels=E,θ
L:=e1,e3=e3,e1,e4=2⁢e4,e1,e5=−e5,e1,e6=e6,e1,e7=−2⁢e7,e1,e8=−e8,e2,e3=−e3,e2,e4=e4,e2,e5=e5,e2,e6=2⁢e6,e2,e7=−e7,e2,e8=−2⁢e8,e3,e5=e1−e2,e3,e6=e4,e3,e7=−e8,e4,e5=−e6,e4,e7=e1,e4,e8=e3,e5,e8=−e7,e6,e7=e5,e6,e8=e2,E11,E22,E12,E13,E21,E23,E31,E32,θ11,θ22,θ12,θ13,θ21,θ23,θ31,θ32
Initialized the Lie algebra.
DGsetup⁡L
Lie algebra: sl3
Find a Cartan subalgebra.
CSA≔CartanSubalgebra⁡
CSA:=E11,E22
We can check that this subalgebra is Abelian (and hence nilpotent) and self-normalizing.
Query⁡CSA,Abelian
true
SubalgebraNormalizer⁡CSA
E22,E11
These properties can also be checked with the Query command
Query⁡CSA,CartanSubalgebra
For the split real forms of the simple Lie algebras, a Cartan subalgebra can always be found consisting of diagonal matrices in the standard representation.
StandardRepresentation⁡sl3,CSA
Example 2
Other Cartan subalgebras for sl4 can be found with the second calling sequence.
CartanSubalgebra⁡E11+3⁢E31
E11+3⁢E31,E22+32⁢E31
Example 3
The Cartan subalgebra of a nilpotent Lie algebra g is g itself. Retrieve the structure equations for a nilpotent Lie algebra from the DifferentialGeometry library.
LD3≔Retrieve⁡Winternitz,1,5,5,alg3
LD3:=e2,e5=e1,e3,e4=e1,e3,e5=e2
DGsetup⁡LD3:
Check that the algebra is nilpotent.
Query⁡Nilpotent
CartanSubalgebra⁡
e1,e2,e3,e4,e5
Example 4
We find the Cartan subalgebra for a solvable Lie algebra. Retrieve the structure equations for a solvable Lie algebra from the DifferentialGeometry library.
LD4≔Retrieve⁡Winternitz,1,5,34,alg4
LD4:=e1,e4=a⁢e1,e1,e5=e1,e2,e4=e2,e3,e4=e3,e3,e5=e2
DGsetup⁡LD4
Lie algebra: alg4
Check that the algebra is solvable.
Query⁡Solvable
CSA4≔CartanSubalgebra⁡
CSA4:=e4,e5
Query⁡CSA4,CartanSubalgebra
Example 5.
We find the Cartan subalgebra for a Lie algebra with a non-trivial Levi decomposition. Retrieve the structure equations for such a Lie algebra from the DifferentialGeometry library.
LD5≔Retrieve⁡Turkowski,1,7,4,alg5
LD5:=e1,e2=2⁢e2,e1,e3=−2⁢e3,e1,e4=e4,e1,e5=−e5,e2,e3=e1,e2,e5=e4,e3,e4=e5,e4,e5=e6,e4,e7=e4,e5,e7=e5,e6,e7=2⁢e6
DGsetup⁡LD5
Lie algebra: alg5
Check that the Levi decomposition is non-trivial.
LeviDecomposition⁡
e4,e5,e6,e7,e1,e2,e3
Calculate the Cartan subalgebra.
CartanSubalgebra⁡alg5
e1,e7
See Also
DifferentialGeometry
LieAlgebras
CartanMatrix
Query
RootSpaceDecomposition
Download Help Document