LieAlgebras[Center] - find the center of a Lie algebra or a non-commutative algebra
Calling Sequences
Center(Alg)
Parameters
Alg - (optional) the name of an initialized Lie algebra
Description
Examples
The center of a Lie algebra 𝔤 is the set of all vectors x such that x, y = 0 for all y ∈ 𝔤. The center of general algebra 𝔸 is the set of all vectors x such that x⋅y = y⋅x for all y ∈𝔸.
Center(Alg) returns a list of vectors whose span is the center of the Lie algebra 𝔤 or general algebra 𝔸 defined by Alg. If no argument is given, then the center of the current algebra is found. If the center is trivial, then an empty list is returned.
The command Center is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Center(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Center(...).
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
First initialize a Lie algebra.
L1≔_DG⁡LieAlgebra,Alg1,5,2,3,1,1,2,5,3,1,4,5,4,1
L1:=e2,e3=e1,e2,e5=e3,e4,e5=e4
DGsetup⁡L1:
Calculate the center of Alg1.
Center⁡Alg1
e1
Example 2.
L2≔_DG⁡LieAlgebra,Alg2,3,1,2,1,1,1,3,2,−2,2,3,3,1
L2:=e1,e2=e1,e1,e3=−2⁢e2,e2,e3=e3
DGsetup⁡L2:
MultiplicationTable⁡LieBracket
e1,e2=e1,e1,e3=−2⁢e2,e2,e3=e3
Center⁡
Example 3.
We calculate the center of the octonions.
L3≔AlgebraLibraryData⁡Octonions,Alg3
L3:=e12=e1,e1.e2=e2,e1.e3=e3,e1.e4=e4,e1.e5=e5,e1.e6=e6,e1.e7=e7,e1.e8=e8,e2.e1=e2,e22=−e1,e2.e3=e4,e2.e4=−e3,e2.e5=e6,e2.e6=−e5,e2.e7=−e8,e2.e8=e7,e3.e1=e3,e3.e2=−e4,e32=−e1,e3.e4=e2,e3.e5=e7,e3.e6=e8,e3.e7=−e5,e3.e8=−e6,e4.e1=e4,e4.e2=e3,e4.e3=−e2,e42=−e1,e4.e5=e8,e4.e6=−e7,e4.e7=e6,e4.e8=−e5,e5.e1=e5,e5.e2=−e6,e5.e3=−e7,e5.e4=−e8,e52=−e1,e5.e6=e2,e5.e7=e3,e5.e8=e4,e6.e1=e6,e6.e2=e5,e6.e3=−e8,e6.e4=e7,e6.e5=−e2,e62=−e1,e6.e7=−e4,e6.e8=e3,e7.e1=e7,e7.e2=e8,e7.e3=e5,e7.e4=−e6,e7.e5=−e3,e7.e6=e4,e72=−e1,e7.e8=−e2,e8.e1=e8,e8.e2=−e7,e8.e3=e6,e8.e4=e5,e8.e5=−e4,e8.e6=−e3,e8.e7=e2,e82=−e1
DGsetup⁡L3
algebra name: Alg3
See Also
DifferentialGeometry
LieAlgebras
Centralizer
Download Help Document