LieAlgebras[Centralizer] - find the centralizer of a list of vectors
Calling Sequences
Centralizer(S, h)
Parameters
S - a list of vectors in a Lie algebra 𝔤 or a general algebra 𝔸
h - (optional) a subalgebra of 𝔤 or 𝔸
Description
Examples
The centralizer of a set of vectors S relative to a subalgebra h is the subalgebra of vectors in h which commute with all the vectors in S.
Centralizer(S, h) calculates the centralizer of the list Sin the subalgebra h. If the second argument h is not specified then the centralizer of S in the entire algebra is calculated.
A list of vectors defining a basis for the centralizer of S is returned. If the centralizer of S is trivial, then an empty list is returned.
The command Centralizer is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Centralizer(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Centralizer(...).
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
First initialize a Lie algebra.
L1≔_DG⁡LieAlgebra,Alg1,5,2,5,1,1,3,4,1,1,3,5,2,1
L1:=e2,e5=e1,e3,e4=e1,e3,e5=e2
DGsetup⁡L1:
Calculate the centralizer of e3 in the Lie algebra Alg1.
S≔e3
S:=e3
Centralizer⁡S
e3,e2,e1
Calculate the centralizer of e4, e5 relative to the subalgebras spanned by e1,e2, e4, e5 and e1,e2, e3.
S≔e4,e5
S:=e4,e5
h≔e1,e2,e4,e5
h:=e1,e2,e4,e5
Centralizer⁡S,h
e5,e4,e1
h≔e1,e2,e3
h:=e1,e2,e3
e1
Example 2.
Calculate the centralizer of a set of vectors in the algebra 𝕆 of octonions.
L2≔AlgebraLibraryData⁡Octonions,Oct
L2:=e12=e1,e1.e2=e2,e1.e3=e3,e1.e4=e4,e1.e5=e5,e1.e6=e6,e1.e7=e7,e1.e8=e8,e2.e1=e2,e22=−e1,e2.e3=e4,e2.e4=−e3,e2.e5=e6,e2.e6=−e5,e2.e7=−e8,e2.e8=e7,e3.e1=e3,e3.e2=−e4,e32=−e1,e3.e4=e2,e3.e5=e7,e3.e6=e8,e3.e7=−e5,e3.e8=−e6,e4.e1=e4,e4.e2=e3,e4.e3=−e2,e42=−e1,e4.e5=e8,e4.e6=−e7,e4.e7=e6,e4.e8=−e5,e5.e1=e5,e5.e2=−e6,e5.e3=−e7,e5.e4=−e8,e52=−e1,e5.e6=e2,e5.e7=e3,e5.e8=e4,e6.e1=e6,e6.e2=e5,e6.e3=−e8,e6.e4=e7,e6.e5=−e2,e62=−e1,e6.e7=−e4,e6.e8=e3,e7.e1=e7,e7.e2=e8,e7.e3=e5,e7.e4=−e6,e7.e5=−e3,e7.e6=e4,e72=−e1,e7.e8=−e2,e8.e1=e8,e8.e2=−e7,e8.e3=e6,e8.e4=e5,e8.e5=−e4,e8.e6=−e3,e8.e7=e2,e82=−e1
DGsetup⁡L2
algebra name: Oct
e1,e3
See Also
DifferentialGeometry
LieAlgebras
Center
Download Help Document