LieAlgebras[GradeSemiSimpleLieAlgebra] - find the grading of a semi-simple Lie algebra defined by a set of simple roots or restricted simple roots
Calling Sequences
GradeSemiSimpleLieAlgebra(Σ , T1)
GradeSemiSimpleLieAlgebra(Σ , T2, method = "non-compact")
Parameters
Σ - a list or set of column vectors, defining a subset of the simple roots or a subset of the restricted simple roots
T1 - a table, with indices that include "RootSpaceDecomposition", "CartanSubalgebra", "SimpleRoots", "PositiveRoots"
T2 - a table, with indices that include "RestrictedRootSpaceDecomposition", "CartanSubalgebra", "RestrictedSimpleRoots", "RestrictedPositiveRoots"
Description
Examples
See Also
Let g be a Lie algebra. A grading of g is a (vector space) direct sum decomposition g = ⨁ k ∈ℤ𝔤k where 𝔤k , 𝔤l ⊆ 𝔤k +l . Gradings of semi-simple Lie algebras can easily be constructed from the root space decomposition. Let h be a Cartan subalgebra and 𝔤 = 𝔥 ⨁α ∈ ΔRα the associated root space decomposition Let Δ+ be a choice of positive roots and let Δ0 ⊆ Δ+ be a set of simple roots. Every root α is a sum of simple roots, say α = Σi=1m ai αi , and one defines the height of the root α as htα = Σi=1m ai .
Now let Σ⊆Δ0 be a collection of simple roots and define the Σ height of α as ht Σα = Σi ai , where the sum is taken over those i such that α∈Σ . Then the subspaces
𝔤t =⨁α : htΣα =t Rα and 𝔤0 = 𝔥 ⊕⨁α : htΣα =0 Rα
define a (symmetric) grading g =⨁t = −k k 𝔤t.
For real Lie algebras, real gradings can be similarly constructed using the restricted root space decomposition.
The command Query/"Gradation" will test if a given decomposition of a Lie algebra is graded.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
We calculate the various gradations for sl4. We use the command SimpleLieAlgebraData to initialize the Lie algebra.
LD≔SimpleLieAlgebraData⁡sl(4),sl4,labelformat=gl,labels=E,ω:
DGsetup⁡LD
Lie algebra: sl4
P≔SimpleLieAlgebraProperties⁡sl4:
We use the command SimpleLieAlgebraProperties to create a table T containing the structure properties of sl4.
T≔SimpleLieAlgebraProperties⁡sl4:
SR≔TSimpleRoots
Here are the possible subsets of the set of simple roots.
Σ≔,SR1..1,SR2..2,SR3..3,SR1..2,SR2..3,SR1,SR3,SR
Here are the gradings defined by each subset of the simple roots.
Σ1,GradeSemiSimpleLieAlgebra⁡Σ1,P
,table0=E11,E22,E33,E12,E23,E34,E13,E24,E14,E21,E32,E43,E31,E42,E41
Σ2,GradeSemiSimpleLieAlgebra⁡Σ2,P
Σ3,GradeSemiSimpleLieAlgebra⁡Σ3,P
Σ4,GradeSemiSimpleLieAlgebra⁡Σ4,P
Σ5,GradeSemiSimpleLieAlgebra⁡Σ5,P
Σ6,GradeSemiSimpleLieAlgebra⁡Σ6,P
Σ7,GradeSemiSimpleLieAlgebra⁡Σ7,P
Σ8,GradeSemiSimpleLieAlgebra⁡Σ8,P
The Query command can be used to check that each of these define a grading of sl4.
G7≔GradeSemiSimpleLieAlgebra⁡Σ7,P
G7:=table0=E11,E22,E33,E23,E32,1=E12,E34,E13,E24,2=E14,−2=E41,−1=E21,E43,E31,E42
Query⁡G7,Gradation
true
Example 2.
We calculate the various gradings for so5,3. We use the command SimpleLieAlgebraData to initialize the Lie algebra.
LD2≔SimpleLieAlgebraData⁡so(5,3),so53,labelformat=gl,labels=R,θ:
DGsetup⁡LD2
Lie algebra: so53
We use the command SimpleLieAlgebraProperties to calculate the restricted root space decomposition, restricted simple roots, etc.
T≔SimpleLieAlgebraProperties⁡so53:
RSR≔TRestrictedSimpleRoots
The subsets of the restricted simple roots are:
Σ≔RSR,RSR1..2,RSR2..3,RSR1,RSR3,RSR1..1,RSR2..2,RSR3..3,
Here are the possible gradings for so5,3.
Σ1,GradeSemiSimpleLieAlgebra⁡Σ1,T,method=non-compact
Σ2,GradeSemiSimpleLieAlgebra⁡Σ2,T,method=non-compact
Σ3,GradeSemiSimpleLieAlgebra⁡Σ3,T,method=non-compact
Σ4,GradeSemiSimpleLieAlgebra⁡Σ4,T,method=non-compact
Σ5,GradeSemiSimpleLieAlgebra⁡Σ5,T,method=non-compact
Σ6,GradeSemiSimpleLieAlgebra⁡Σ6,T,method=non-compact
Σ7,GradeSemiSimpleLieAlgebra⁡Σ7,T,method=non-compact
Σ8,GradeSemiSimpleLieAlgebra⁡Σ8,T,method=non-compact
,table0=R78,R33,R22,R11,R16,R13,R17,R18,R26,R27,R28,R12,R23,R15,R37,R38,R43,R31,R47,R48,R53,R57,R58,R21,R32,R42,R67,R68
The Query command can be used to check that each of these define a grading of so5,3.
G1≔GradeSemiSimpleLieAlgebra⁡Σ1,T,method=non-compact
G1:=table0=R78,R33,R22,R11,1=R12,R23,R37,R38,2=R13,R27,R28,3=R17,R18,R26,5=R15,4=R16,−5=R42,−4=R43,−3=R47,R48,R53,−2=R31,R57,R58,−1=R21,R32,R67,R68
Query⁡G1,Gradation
DifferentialGeometry, CartanSubalgebra, KillingForm, LieAlgebras, PositiveRoots, Query, SimpleRoots, RootSpaceDecomposition, RestrictedRootSpaceDecomposition, SimpleLieAlgebraData, SimpleLieAlgebraProperties
Download Help Document