DifferentialGeometry/LieAlgebras/Query/CartanInvolution - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/CartanInvolution

Query[CartanInvolution] - check if a linear transformation of a semi-simple, real Lie algebra is a Cartan involution

Calling Sequences

     Query(Theta, CartanInvolution)

Parameters

     Theta    - a transformation, mapping a semi-simple Lie algebra to itself

 

Description

Examples

See Also

Description

• 

Let g be a semi-simple, real Lie algebra. Then g is called compact if the Killing form , of g is negative-definite, otherwise g is called non-compact.  

• 

A Cartan involution of g is a Lie algebra automorphism Θ : gg such that [i] Θ2  = Id, and [ii] the symmetric bilinear form BΘx,y = x,Θy is positive-definite.

Examples

 

withDifferentialGeometry:withLieAlgebras:

 

We check to see if some transformations of sl2 are Cartan involutions. Initialize the Lie algebra sl2.

LDLieAlgebraDatah,x=2x,h,y=2y,x,y=h,h,x,y,sl2

LD:=e1,e2=2e2,e1,e3=2e3,e2,e3=e1

(2.1)

DGsetupLD

Lie algebra: sl2

(2.2)

 

Define a transformation Θ1 and check that it is an involution.

sl2 > 

Θ1Transformatione1,e1,e2,e3,e3,e2

Θ1:=e1,e1,e2,e3,e3,e2

(2.3)
sl2 > 

QueryΘ1,CartanInvolution

true

(2.4)

 

Define a transformation Θ2.  It is a homomorphism, Θ2  = Id, but the symmetric bilinear form BΘx,y =  x,Θy is not positive-definite.

sl2 > 

Θ2Transformatione1,e1,e2,e2,e3,e3

Θ2:=e1,e1,e2,e2,e3,e3

(2.5)
sl2 > 

QueryΘ2,CartanInvolution

false

(2.6)

 

The map Θ2 is a homomorphism.

sl2 > 

QueryΘ2,Homomorphism

true

(2.7)

 

The map Θ2 satisfies Θ22  = Id,

sl2 > 

ComposeTransformationsΘ2,Θ2

e1,e1,e2,e2,e3,e3

(2.8)

 

 

The symmetric bilinear form BΘx,y = x,Θy is not positive-definite.

sl2 > 

Ve1,e2,e3

V:=e1,e2,e3

(2.9)
sl2 > 

Matrix3,3,i,jKillingVi,ApplyHomomorphismΘ2,Vj

See Also

DifferentialGeometry, ApplyHomomorphism, ComposeTransformations, Killing, Query[Homomorphism], Transformation