AdaptedSpinorDyad - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[AdaptedSpinorDyad] - find a spinor dyad which transforms the Weyl spinor to normal form

Calling Sequences

     AdaptedSpinorDyad( W, PT, options)

Parameters

     W         - a symmetric rank 4 covariant spinor

  PT        - the Petrov type of the spinor W

     options   - one or more of the keyword arguments method and output

 

Description

Examples

Description

• 

Let WABCD be a rank 4 symmetric spinor and let σa   AA' be a solder form on a 4-dimensional spacetime of signature [1, -1, -1, -1]. Then the rank 4 tensor

Wabcd = σa   AA' σb   BB' σc   CC' σd   DD'WABCD ε A' B' ε C' D'   + ε A Bε CD  WA'B'C'D'

enjoys all the symmetries of the Weyl tensor. It is skew-symmetric in the indices ab and cd, satisfies the cyclic identity on bcd, and is trace-free with respect to the metric defined by the solder form σ.  

• 

If ιA, οA is a spinor dyad (a pair of rank-2 spinors with ιAοA =1) then the spinor WABCD can be expressed as

WABCD = Ψ0 ιAιBιCιD4 Ψ1 ι(AιBιCοD)+ 6 Ψ2 ι(AιBοCοD)4 Ψ3 ι(AοBοCοD) + Ψ4 οAοBοCοD .    (*)

The coefficients Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 coincide with the Newman-Penrose Weyl scalars for the Weyl tensor Wabcd constructed from the null tetrad defined by the spinor dyad ιA, οA.

• 

The Petrov type of the spinor WABCD coincides with the Petrov type of the Weyl tensor Wabcd or the Petrov type of the spacetime determined by the Newman-Penrose Weyl scalars. See NPCurvatureScalars, NullTetrad, PetrovType, SolderForm, WeylSpinor.

• 

The normal forms for the Newman-Penrose coefficients are as follows.

Type I. Ψ0= 32 η χ , Ψ1 = 0, Ψ2=12η2  χ, Ψ3 =0, Ψ4 = 32η χ .

Type II. Ψ0 = 0,Ψ1 = 0,Ψ2=η, Ψ3 =0, Ψ4 = 6 η.

Type III. Ψ0= 0, Ψ1 = 0, Ψ2=0, Ψ3 =1, Ψ4= 0.

Type D. Ψ0= 0, Ψ1 = 0, Ψ2=η, Ψ3 = 0, Ψ4= 0.

Type N. Ψ0= 0, Ψ1 =0, Ψ2 = 0, Ψ3 = 0, Ψ4 = 1.

Type O. Ψ0 = 0, Ψ1 = 0, Ψ2 =0, Ψ3 =0, Ψ4 = 0.

See Penrose and Rindle Vol. 2, Section 8.3.

Thus, for example, if the Petrov type of the Weyl spinor is D, then there is a spinor dyad ιA, οA such that the Weyl spinor takes the form WABCD= 6 η ι(AιBιCοD). Such a spinor dyad is said to be an adapted spinor dyad.

• 

The command AdaptedSpinorDyad returns a contravariant spinor dyad which will put the given Weyl spinor in the above normal form. If the Petrov type is I, then the values of η, χ are also returned. If the Petrov type is II or D, the value of η is given.

• 

The adapted spinor dyads need not be unique; multiple adapted spinor dyads may be returned. All computed dyads will be returned with the keyword argument output = all. If the type is III or N, then a quasi-adapted dyad (where the 1 non-zero Newman-Penrose coefficient is not normalized to 1) will be calculated if method = "unnormalized".

• 

The command AdaptedSpinorDyad is part of the DifferentialGeometry:-Tensor package. It can be used in the form AdaptedSpinorDyad(...) only after executing the commands with(DifferentialGeometry) and with(Tensor), but can always be used by executing DifferentialGeometry:-Tensor:-AdaptedSpinorDyad(...).

Examples

withDifferentialGeometry:withTensor:

 

Set the global environment variable _EnvExplicit to true to insure that our results are free of RootOf expressions.

Spin > 

_EnvExplicittrue:

 

We give examples of Weyl spinors of each Petrov type and calculate an adapted spinor dyad. We check that the spinor dyad has the desired properties.

First create the spinor bundle over a 4 dimensional spacetime.

DGsetupt,x,y,z,z1,z2,w1,w2,Spin

frame name: Spin

(2.1)

 

In order to construct the Weyl spinors for our examples, we need a basis for the vector space of symmetric rank 4 spinors. This we obtain from the GenerateSymmetricTensors command.

Spin > 

SGenerateSymmetricTensorsdz1,dz2,4

S:=dz1dz1dz1dz1,14dz1dz1dz1dz2+14dz1dz1dz2dz1+14dz1dz2dz1dz1+14dz2dz1dz1dz1,16dz1dz1dz2dz2+16dz1dz2dz1dz2+16dz1dz2dz2dz1+16dz2dz1dz1dz2+16dz2dz1dz2dz1+16dz2dz2dz1dz1,14dz1dz2dz2dz2+14dz2dz1dz2dz2+14dz2dz2dz1dz2+14dz2dz2dz2dz1,dz2dz2dz2dz2

(2.2)

 

Example 1. Type I

Define a rank 4 spinor W1.

Spin > 

W1DGzip6,12,30,24,6,S,plus

W1:=6dz1dz1dz1dz1+3dz1dz1dz1dz2+3dz1dz1dz2dz1+5dz1dz1dz2dz2+3dz1dz2dz1dz1+5dz1dz2dz1dz2+5dz1dz2dz2dz1+6dz1dz2dz2dz2+3dz2dz1dz1dz1+5dz2dz1dz1dz2+5dz2dz1dz2dz1+6dz2dz1dz2dz2+5dz2dz2dz1dz1+6dz2dz2dz1dz2+6dz2dz2dz2dz1+6dz2dz2dz2dz2

(2.3)

 

Calculate the Newman-Penrose coefficients for W1 with respect to the initial dyad basis dz1, dz2.

Spin > 

NP1NPCurvatureScalarsW1,dz1,dz2

NP1:=tablePsi2=5,Psi0=6,Psi1=6,Psi3=3,Psi4=6

(2.4)

 

Use these coefficients to find the Petrov type of W1.

Spin > 

PetrovTypeNP1

I

(2.5)

 

Compute an adapted contravariant spinor dyad for W1 and the corresponding η, χ.

Spin > 

SpinorDyadCon1,η1,χ1AdaptedSpinorDyadW1,I

SpinorDyadCon1,η1,χ1:=D_z1D_z2,D_z2,1,4

(2.6)

 

Here is the covariant form of the spinor dyad.

Spin > 

Dyad1mapRaiseLowerSpinorIndices,SpinorDyadCon1,1

Dyad1:=dz1+dz2,dz1

(2.7)

 

We check that this answer is correct in two ways. First we can re-calculate the Newman-Penrose coefficients and confirm that they are in the correct normal form.

Spin > 

NPCurvatureScalarsW1,Dyad1

tablePsi2=1,Psi0=6,Psi1=0,Psi3=0,Psi4=6

(2.8)

This is the correct normal form since Ψ1= Ψ3 = 0, Ψ0 = Ψ4= 32ηχ = 3214 = 6 and Ψ2 = 12η2 χ = 12 1 2 = 1.

 

Second, we can calculate a type I Weyl spinor from this spinor dyad using the command WeylSpinor and check that the result coincides with the original spinor W1.

Spin > 

W1CheckWeylSpinorDyad1,I,1,4

W1Check:=6dz1dz1dz1dz1+3dz1dz1dz1dz2+3dz1dz1dz2dz1+5dz1dz1dz2dz2+3dz1dz2dz1dz1+5dz1dz2dz1dz2+5dz1dz2dz2dz1+6dz1dz2dz2dz2+3dz2dz1dz1dz1+5dz2dz1dz1dz2+5dz2dz1dz2dz1+6dz2dz1dz2dz2+5dz2dz2dz1dz1+6dz2dz2dz1dz2+6dz2dz2dz2dz1+6dz2dz2dz2dz2

(2.9)
Spin > 

W1&minusW1Check

0dz1dz1dz1dz1

(2.10)

 

Alternative dyads will be computed with the keyword argument output = all.

Spin > 

_EnvExplicittrue:

Spin > 

AdaptedSpinorDyadW1,I,output=all

D_z2,D_z1D_z2,1,4,12+I2D_z11+ID_z2,12I2D_z1,3,13,12+I2D_z1+ID_z2,12+I2D_z1D_z2,4,34,I22D_z1,I22D_z1I2D_z2,4,14,22I22D_z1+22I22D_z2,12+I22D_z2,3,43,22D_z1+22I22D_z2,I22D_z122I22D_z2,1,3

(2.11)

 

Example 2. Type II

Define a rank 4 spinor W2.

Spin > 

W2DGzip4,4,6,16,10,S,plus

W2:=4dz1dz1dz1dz1+dz1dz1dz1dz2+dz1dz1dz2dz1+dz1dz1dz2dz2+dz1dz2dz1dz1+dz1dz2dz1dz2+dz1dz2dz2dz1+4dz1dz2dz2dz2+dz2dz1dz1dz1+dz2dz1dz1dz2+dz2dz1dz2dz1+4dz2dz1dz2dz2+dz2dz2dz1dz1+4dz2dz2dz1dz2+4dz2dz2dz2dz1+10dz2dz2dz2dz2

(2.12)

 

Calculate the Newman-Penrose coefficients for W2 with respect to the standard dyad basis dz1, dz2.

Spin > 

NP2NPCurvatureScalarsW2,dz1,dz2

NP2:=tablePsi0=10,Psi1=4,Psi3=1,Psi4=4,Psi2=1

(2.13)

 

Find the Petrov type of W2.

Spin > 

PetrovTypeNP2

II

(2.14)

 

Compute an adapted contravariant spinor dyad for W2.

Spin > 

SpinorDyadCon2,η2AdaptedSpinorDyadW2,II

SpinorDyadCon2,η2:=133D_z1133D_z2,233D_z1133D_z2,3

(2.15)

 

Here is the covariant form of the adapted spinor dyad.

Spin > 

Dyad2mapRaiseLowerSpinorIndices,SpinorDyadCon2,1

Dyad2:=133dz1+133dz2,133dz1233dz2

(2.16)

 

We check that this answer is correct in two ways. First we can re-calculate the Newman-Penrose coefficients and confirm that they are in the correct normal form.

Spin > 

NPCurvatureScalarsW2,Dyad2

tablePsi0=0,Psi1=0,Psi3=0,Psi4=18,Psi2=3

(2.17)

This is the correct normal form since Ψ0=Ψ1= Ψ3 = 0, Ψ2 = η= 3 and Ψ4 = 6 η= 18.

 

Second, we can calculate a type II Weyl spinor from this spinor dyad and check that the result coincides with the original spinor W2.

Spin > 

W2CheckWeylSpinorDyad2,II,3

W2Check:=4dz1dz1dz1dz1+dz1dz1dz1dz2+dz1dz1dz2dz1+dz1dz1dz2dz2+dz1dz2dz1dz1+dz1dz2dz1dz2+dz1dz2dz2dz1+4dz1dz2dz2dz2+dz2dz1dz1dz1+dz2dz1dz1dz2+dz2dz1dz2dz1+4dz2dz1dz2dz2+dz2dz2dz1dz1+4dz2dz2dz1dz2+4dz2dz2dz2dz1+10dz2dz2dz2dz2

(2.18)
Spin > 

W2&minusW2Check

0dz1dz1dz1dz1

(2.19)

 

Example 3. Type III

Define a rank 4 spinor W3.

Spin > 

W3DGzip8,20I,12,4I,4,S,plus

W3:=8dz1dz1dz1dz1Idz2dz1dz2dz25Idz1dz1dz1dz2+2dz1dz1dz2dz2Idz1dz2dz2dz2+2dz1dz2dz1dz2+2dz1dz2dz2dz1Idz2dz2dz1dz25Idz1dz2dz1dz1+2dz2dz1dz1dz2+2dz2dz1dz2dz15Idz1dz1dz2dz1+2dz2dz2dz1dz1Idz2dz2dz2dz15Idz2dz1dz1dz1+4dz2dz2dz2dz2

(2.20)

 

Calculate the Newman-Penrose coefficients for W3 with respect to the initial dyad basis dz1, dz2.

Spin > 

NP3NPCurvatureScalarsW3,dz1,dz2

NP3:=tablePsi0=4,Psi1=I,Psi3=5I,Psi4=8,Psi2=2

(2.21)

 

Find the Petrov type of W3.

Spin > 

PetrovTypeNP3

III

(2.22)

 

Compute an adapted contravariant spinor dyad for W3.

Spin > 

SpinorDyadCon3AdaptedSpinorDyadW3,III

SpinorDyadCon3:=1212I6D_z1+12612I6D_z2,118118I6D_z1+19+19I6D_z2

(2.23)

 

Here is the covariant form of the spinor dyad.

Spin > 

Dyad3mapRaiseLowerSpinorIndices,SpinorDyadCon3,1

Dyad3:=126+12I6dz1+1212I6dz2,1919I6dz1+118118I6dz2

(2.24)

 

We check that this answer is correct in two ways. First we can re-calculate the Newman-Penrose coefficients and confirm that they are in the correct normal form.

Spin > 

NPCurvatureScalarsW3,Dyad3

tablePsi0=0,Psi1=0,Psi3=1,Psi4=0,Psi2=0

(2.25)

This is the correct normal form since Ψ0 =Ψ1= Ψ2 = Ψ4 = 0, Ψ3= 1.

 

Second, we can calculate a type III Weyl spinor from this spinor dyad and check that the result coincides with the original spinor W3.

Spin > 

W3CheckWeylSpinorDyad3,III

W3Check:=8dz1dz1dz1dz1Idz2dz2dz2dz15Idz1dz1dz2dz1+2dz1dz1dz2dz2Idz1dz2dz2dz2+2dz1dz2dz1dz2+2dz1dz2dz2dz1Idz2dz2dz1dz25Idz1dz2dz1dz1+2dz2dz1dz1dz2+2dz2dz1dz2dz15Idz1dz1dz1dz2+2dz2dz2dz1dz15Idz2dz1dz1dz1Idz2dz1dz2dz2+4dz2dz2dz2dz2

(2.26)
Spin > 

W3&minusW3Check

0dz1dz1dz1dz1

(2.27)

 

Example 4. Type D

Define a rank 4 spinor W4.

Spin > 

W4DGzip3,18,3,72,48,S,plus

W4:=3dz1dz1dz1dz192dz1dz1dz1dz292dz1dz1dz2dz1+12dz1dz1dz2dz292dz1dz2dz1dz1+12dz1dz2dz1dz2+12dz1dz2dz2dz1+18dz1dz2dz2dz292dz2dz1dz1dz1+12dz2dz1dz1dz2+12dz2dz1dz2dz1+18dz2dz1dz2dz2+12dz2dz2dz1dz1+18dz2dz2dz1dz2+18dz2dz2dz2dz1+48dz2dz2dz2dz2

(2.28)

 

Calculate the Newman-Penrose coefficients for W4 with respect to the initial dyad basis dz1, dz2.

Spin > 

NP4NPCurvatureScalarsW4,dz1,dz2

NP4:=tablePsi0=48,Psi1=18,Psi3=92,Psi4=3,Psi2=12

(2.29)

 

Find the Petrov type of W4.

Spin > 

PetrovTypeNP4

D

(2.30)

 

Compute an adapted contravariant spinor dyad for W4.

Spin > 

SpinorDyadCon4,η4AdaptedSpinorDyadW4,D

SpinorDyadCon4,η4:=D_z1D_z2,45D_z1+15D_z2,252

(2.31)

 

Here is the covariant form of the spinor dyad.

Spin > 

Dyad4mapRaiseLowerSpinorIndices,SpinorDyadCon4,1

Dyad4:=dz1+dz2,15dz1+45dz2

(2.32)

 

We check that this answer is correct in two ways. First we can re-calculate the Newman-Penrose coefficients and confirm that they are in the correct normal form.

Spin > 

NPCurvatureScalarsW4,Dyad4

tablePsi0=0,Psi1=0,Psi3=0,Psi4=0,Psi2=252

(2.33)

This is the correct normal form since Ψ0 = Ψ1= Ψ3 = Ψ4 = 0, Ψ2 = η = 252.

 

Second, we can calculate a type D Weyl spinor from this spinor dyad and check that the result coincides with the original spinor W4.

Spin > 

W4CheckWeylSpinorDyad4,D,η4

W4Check:=3dz1dz1dz1dz192dz1dz1dz1dz292dz1dz1dz2dz1+12dz1dz1dz2dz292dz1dz2dz1dz1+12dz1dz2dz1dz2+12dz1dz2dz2dz1+18dz1dz2dz2dz292dz2dz1dz1dz1+12dz2dz1dz1dz2+12dz2dz1dz2dz1+18dz2dz1dz2dz2+12dz2dz2dz1dz1+18dz2dz2dz1dz2+18dz2dz2dz2dz1+48dz2dz2dz2dz2

(2.34)
Spin > 

W4&minusW4Check

0dz1dz1dz1dz1

(2.35)

 

Example 5. Type N

Define a rank 4 spinor W5.

Spin > 

W5DGzip1,12,54,108,81,S,plus

W5:=dz1dz1dz1dz1+3dz1dz1dz1dz2+3dz1dz1dz2dz1+9dz1dz1dz2dz2+3dz1dz2dz1dz1+9dz1dz2dz1dz2+9dz1dz2dz2dz1+27dz1dz2dz2dz2+3dz2dz1dz1dz1+9dz2dz1dz1dz2+9dz2dz1dz2dz1+27dz2dz1dz2dz2+9dz2dz2dz1dz1+27dz2dz2dz1dz2+27dz2dz2dz2dz1+81dz2dz2dz2dz2

(2.36)

 

Calculate the Newman-Penrose coefficients for W5 with respect to the initial dyad basis dz1, dz2.

Spin > 

NP5NPCurvatureScalarsW5,dz1,dz2

NP5:=tablePsi0=81,Psi1=27,Psi3=3,Psi4=1,Psi2=9

(2.37)

 

Find the Petrov type of W5.

Spin > 

PetrovTypeNP5

N

(2.38)

 

Compute an adapted contravariant spinor dyad for W5.

Spin > 

SpinorDyadCon5AdaptedSpinorDyadW5,N

SpinorDyadCon5:=3D_z1D_z2,D_z1

(2.39)

 

Here is the covariant form of the spinor dyad.

Spin > 

Dyad5mapRaiseLowerSpinorIndices,SpinorDyadCon5,1

Dyad5:=dz1+3dz2,dz2

(2.40)

 

We check that this answer is correct in two ways. First we can re-calculate the Newman-Penrose coefficients and confirm that they are in the correct normal form.

Spin > 

NPCurvatureScalarsW5,Dyad5

tablePsi0=0,Psi1=0,Psi3=0,Psi4=1,Psi2=0

(2.41)

This is the correct normal form since Ψ0 = Ψ1= Ψ2= Ψ3 = 0, Ψ4 = 1.

 

Second, we can calculate a type N Weyl spinor from this spinor dyad and check that the result coincides with the original spinor W5.

Spin > 

W5CheckWeylSpinorDyad5,N

W5Check:=dz1dz1dz1dz1+3dz1dz1dz1dz2+3dz1dz1dz2dz1+9dz1dz1dz2dz2+3dz1dz2dz1dz1+9dz1dz2dz1dz2+9dz1dz2dz2dz1+27dz1dz2dz2dz2+3dz2dz1dz1dz1+9dz2dz1dz1dz2+9dz2dz1dz2dz1+27dz2dz1dz2dz2+9dz2dz2dz1dz1+27dz2dz2dz1dz2+27dz2dz2dz2dz1+81dz2dz2dz2dz2

(2.42)
Spin > 

W5&minusW5Check

0dz1dz1dz1dz1

(2.43)

 

See Also

DifferentialGeometry

Tensor

AdaptedNullTetrad

NPCurvatureScalars

NullVector

PetrovType

PrincipalNullDirections

WeylSpinor