Tensor[CongruenceProperties] - calculate properties of a congruence of curves
Calling Sequences
CongruenceProperties(g, U)
CongruenceProperties(g, K, L)
CongruenceProperties(g, K)
CongruenceProperties(g, NT)
Parameters
g - a metric tensor
U - a unit vector
K,L - normalized null vectors, the vector K defines an affinely parameterized, geodesic null congruence.
NT - a list of 4 vectors, defining a null tetrad, the first vector in the tetrad defines the geodesic null congruence.
Description
Examples
The command CongruenceProperties returns a table of properties associated to a line congruence defined by a unit (time-like or space-like) vector field U or a null vector field K.
Let ϵ = gU, U = ±1, sethab = gab−ϵ UaUb . The following scalar and tensor fields are calculated by the first calling sequence.
- Acceleration: Aa= Ub∇b Ua .
- Expansion: Θ = ∇aUa .
- Rotation Tensor : ωab= 1/2 (∇b Ua −∇a Ub − ϵAaUb + ϵAbUa) .
- Shear Tensor: σab= 1/2 (∇b Ua +∇a Ub − ϵAaUb − ϵAbUa −1n−1 Θ hab) .
The left-hand side of the Raychaudhuri equation Ua∇aΘ + Rab UaUb− ωabωab + σabσab +N Θ2 = 0, valid when the congruence is geodesic (Aa=0), where Rab is the Ricci tensor and N = 1/n−1, is also calculated.
The first calling sequence returns a table with indices "Acceleration", "Expansion", "RotationTensor", "ShearTensor", "Raychaudhuri".
The remaining three calling sequences apply only to an affinely parameterized, geodesic null congruence , that is, Ka Ka =0 and Kb∇bKa = 0.
The second calling sequence requires gK, K=0=gL, L,gK, L = α,where α = ±1. Sethab = gab−α KaLb + Kb La and vab = hac hbd ∇c Kd. Define
- Expansion: Θ = ∇aKa .
- Rotation Tensor: ωab=12vab − vba.
- Rotation Scalar: ω = α2εabcd LaKb ∇c Kd .
- Complex expansion: ρ = − 12Θ+ I ω.
- Shear Tensor: σab=12vab + vba −1/n−2hab Θ.
The Raychaudhuri equation is as above but using these definitions of ω and σ and with N = 1/n−2.
The second calling sequence returns a table with 8 indices "Expansion", "RotationNormSquared" "ShearNormSquared", "RotationTensor", "RotationScalar", "ShearTensor" , "ComplexExpansion" and "Raychaudhuri".
The third calling sequence calculates: Expansion: Θ = ∇aKa; Rotation norm squared = ωab ωab ; and Shear norm squared = σabσab . The definitions are as in the second calling sequence but, as these scalars do not in fact depend upon the choice of L, only the vector K is needed as input. The third calling sequence returns a table with indices "Expansion", "RotationNormSquared", "ShearNormSquared" and "Raychaudhuri".
Finally, from the 4th calling sequence we set K = NT1, L =NT2, M = NT3 and M ‾ = NT4 and calculate, in addition to the 8 quantities calculated for the second calling sequence , σ = − MaMb ∇a Kb , referenced by the index sigma. In this case, the quantities ρ and σ are Newman-Penrose Spin Coefficients.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
For our first example we use the standard metric on the sphere.
DGsetup⁡θ,φ,M
frame name: M
g≔evalDG⁡R2⁢dtheta&tdtheta+sin⁡θ2⁢dphi&tdphi
g:=R2⁢dtheta⁢dtheta+R2⁢sin⁡θ2⁢dphi⁢dphi
Define a unit vector field U.
U≔evalDG⁡1R⁢sin⁡θ⁢D_phi
U:=D_phiR⁢sin⁡θ
We see that the congruence is geodesic on the equator ( θ = π/2) but is accelerating elsewhere. It is shearing, rotating and non-expanding.
CongruenceProperties⁡g,U
tableRaychaudhuri=1R2,Acceleration=−cos⁡θ⁢D_thetaR2⁢sin⁡θ,ShearTensor=0⁢dtheta⁢dtheta,Expansion=0,RotationTensor=0⁢dtheta⁢dtheta
Example 2.
For the next example we consider a class of Robinson-Trautman metrics. These are of Petrov type II and admit a null congruence which is shear-free.
DGsetup⁡u,r,ζ,zetab,RT
frame name: RT
g≔evalDG⁡2⁢r2⁢P⁡ζ,zetab,u−2⁢dzeta&sdzetab−2⁢du&sdr−2⁢H⁡ζ,zetab,r,u⁢du&tdu
g:=−2⁢H⁡ζ,zetab,r,u⁢du⁢du−du⁢dr−dr⁢du+r2⁢dzeta⁢dzetabP⁡ζ,zetab,u2+r2⁢dzetab⁢dzetaP⁡ζ,zetab,u2
Here is a null tetrad for this metric.
NT≔evalDG⁡D_r,D_u−H⁡ζ,zetab,r,u⁢D_r,P⁡ζ,zetab,ur⁢D_zeta,P⁡ζ,zetab,ur⁢D_zetab
NT:=D_r,D_u−H⁡ζ,zetab,r,u⁢D_r,P⁡ζ,zetab,u⁢D_zetar,P⁡ζ,zetab,u⁢D_zetabr
The null congruence is very simple:
U≔NT1
_DG⁡vector,RT,,2,1
First calling sequence:
CongruenceProperties⁡g,D_r
tableShearNormSquared=0,RotationNormSquared=0,Raychaudhuri=0,Expansion=2r
Third calling sequence:
CongruenceProperties⁡g,NT1,NT2
tableShearNormSquared=0,RotationNormSquared=0,Raychaudhuri=0,RotationScalar=0,ShearTensor=0⁢du⁢du,Expansion=2r,RotationTensor=0⁢du⁢du
Fourth calling sequence
CongruenceProperties⁡g,NT
tableShearNormSquared=0,RotationNormSquared=0,sigma=0,Raychaudhuri=0,RotationScalar=0,ShearTensor=0⁢du⁢du,rho=−1r,Expansion=2r,RotationTensor=0⁢du⁢du
Example 3.
Here is an example of a Newman-Tamburino metric of Petrov type I and which admits a null geodesic congruence with non-vanishing shear.
DGsetup⁡u,r,x,y,M
g≔evalDG⁡r2⁢dx&tdx+x2⁢dy&tdy−2⁢rx⁢du&sdx−2⁢du&sdr+1x2⁢c+ln⁡r2⁢x4⁢du&tdu
g:=c+ln⁡r2⁢x4⁢du⁢dux2−du⁢dr−r⁢du⁢dxx−dr⁢du−r⁢dx⁢dux+r2⁢dx⁢dx+x2⁢dy⁢dy
NT≔D_r,D_u+c+ln⁡r2⁢x4⁢D_r2⁢x2,−sqrt⁡2⁢D_rx+sqrt⁡2⁢D_x2⁢r+I⁢12⁢sqrt⁡2⁢D_yx,−sqrt⁡2⁢D_rx+sqrt⁡2⁢D_x2⁢r−I⁢12⁢sqrt⁡2⁢D_yx
NT:=D_r,D_u+12⁢c+ln⁡r2⁢x4⁢D_rx2,−2⁢D_rx+12⁢2⁢D_xr+12⁢I⁢2⁢D_yx,−2⁢D_rx+12⁢2⁢D_xr−12⁢I⁢2⁢D_yx
Again we consider the first leg of this tetrad.
U≔D_r
_DG⁡vector,M,,2,1
tableShearNormSquared=12⁢r2,RotationNormSquared=0,Raychaudhuri=0,Expansion=1r
tableShearNormSquared=12⁢r2,RotationNormSquared=0,Raychaudhuri=0,RotationScalar=0,ShearTensor=12⁢r⁢dx⁢dx−12⁢x2⁢dy⁢dyr,Expansion=1r,RotationTensor=0⁢du⁢du
Fourth calling sequence:
tableShearNormSquared=12⁢r2,RotationNormSquared=0,sigma=−12⁢r,Raychaudhuri=0,RotationScalar=0,ShearTensor=12⁢r⁢dx⁢dx−12⁢x2⁢dy⁢dyr,rho=−12⁢r,Expansion=1r,RotationTensor=0⁢du⁢du
See Also
DifferentialGeometry
Tensor
AdaptedSpinorDyad
AdaptedNullTetrad
NPCurvatureScalars
NullVector
PetrovType
PrincipalNullDirections
Download Help Document