Tensor[CurvatureTensor] - calculate the curvature tensor of a linear connection on the tangent bundle or on a vector bundle
Calling Sequences
CurvatureTensor(g)
CurvatureTensor(C)
Parameters
g - a metric on the tangent bundle of a manifold
C - a connection on the tangent bundle of a manifold or on a vector bundle
Description
Examples
See also
Let ∇ be a connection on the tangent bundle of a manifold M and let χM be the module of all vector fields on M. The curvature tensor of ∇ is the type 1,3 tensor R (contravariant rank 1, covariant rank 3) which, when viewed as a linear map R:χM×χM→LχM, is given by
RX,YZ = ∇X∇YZ−∇Y∇XZ−∇X,YZ.
Here X, Y, and Z are vector fields on M and L denotes the set of linear mappings L:χM→χM.
More generally, let ∇ be a connection on a vector bundle E→M and let ΣE be the module of all sections of E. The curvature tensor of ∇, when viewed as a linear map Ω:χM×χM→LΣE, is given by
ΩX,Yσ = ∇X∇Yσ−∇Y∇Xσ−∇X,Yσ
Here X and Y are vector fields on M and σ∈ΣE is a section of E.
The first calling sequence computes the Christoffel symbol of the input metric g and returns the Riemann curvature tensor on the tangent bundle as a tensor of type 13. The index type of the output is ["con_bas", "cov_bas", "cov_bas", "cov_bas"]. See TensorIndexType.
The second calling sequence returns the curvature tensor of the input connection C. The index type of the output is ["con_vrt", "cov_vrt", "cov_bas", "cov_bas"]. See TensorIndexType.
The first Bianchi identity for the curvature tensor of a connection on the tangent bundle of a manifold asserts that
R + ∇S + S·S skew−symmetrized on indices 1,3,4=0
Here S is the torsion tensor of the connection, and S·S is the contraction of S⊗S over the 3rd and 4th indices.
The second Bianchi Identity asserts that ∇R + R·S skew−symmetrized on indices 3,4,5 = 0. Here R·S denotes the contraction of R⊗S on the third and fifth indices.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CurvatureTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CurvatureTensor.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a 3 dimensional manifold M and define a metric on the tangent space of M.
DGsetup⁡x,y,z,M
frame name: M
g1≔evalDG⁡exp⁡y⁢dx&tdx+dy&tdy+dz&tdz
g1:=ⅇy⁢dx⁢dx+dy⁢dy+dz⁢dz
Calculate the curvature tensor for the metric g1.
R1≔CurvatureTensor⁡g1
R1:=−14⁢D_x⁢dy⁢dx⁢dy+14⁢D_x⁢dy⁢dy⁢dx+ⅇy4⁢D_y⁢dx⁢dx⁢dy−ⅇy4⁢D_y⁢dx⁢dy⁢dx
Example 2.
First create a 3 dimensional manifold M and define a connection on the tangent space of M.
C2≔Connection⁡x2⁢D_x&tdx&tdy−y2⁢D_x&tdy&tdy+y⁢z⁢D_x&tdz&tdy
C2:=x2⁢D_x⁢dx⁢dy−y2⁢D_x⁢dy⁢dy+y⁢z⁢D_x⁢dz⁢dy
R2≔CurvatureTensor⁡C2
R2:=2⁢x⁢D_x⁢dx⁢dx⁢dy−2⁢x⁢D_x⁢dx⁢dy⁢dx−y⁢D_x⁢dz⁢dy⁢dz+y⁢D_x⁢dz⁢dz⁢dy
Here are two simple procedures we shall use for checking the Bianchi identities.
Bianchi1 := proc(R, C)
local S,T1,T2,T3,T4
S≔TorsionTensor⁡C
T1≔R
T2≔CovariantDerivative⁡S,C:
T3≔ContractIndices⁡S,S,3,1
T4≔evalDG⁡T1−T2+T3
SymmetrizeIndices⁡T4,2,3,4,SkewSymmetric
end:
Bianchi2 := proc(R, C)
local T1,T2,S
T1≔CovariantDerivative⁡R,C
T2≔ContractIndices⁡R,S,3,1
SymmetrizeIndices⁡T1&plusT2,3,4,5,SkewSymmetric
Use the above programs to check the Bianchi identities.
Bianchi1⁡R2,C2
0⁢D_x⁢dx⁢dx⁢dx
Bianchi2⁡R2,C2
0⁢D_x⁢dx⁢dx⁢dx⁢dx
Example 3.
Define a frame on M and use this frame to specify a connection on the tangent space of M.
FR≔FrameData⁡x2y⁢dx,zx⁢dy,x⁢y⁢dz,M1:
DGsetup⁡FR
frame name: M1
C3≔Connection⁡E2&tΘ1&tΘ2
C3:=E2⁢Θ1⁢Θ2
R3≔CurvatureTensor⁡C3
R3:=−yx3⁢E2⁢Θ1⁢Θ1⁢Θ2+yx3⁢E2⁢Θ1⁢Θ2⁢Θ1−1z⁢x⁢y⁢E2⁢Θ1⁢Θ2⁢Θ3+1z⁢x⁢y⁢E2⁢Θ1⁢Θ3⁢Θ2
Bianchi1⁡R3,C3
0⁢E1⁢Θ1⁢Θ1⁢Θ1
Bianchi2⁡R3,C3
0⁢E1⁢Θ1⁢Θ1⁢Θ1⁢Θ1
Example 4.
First create a rank 3 vector bundle E→M and define a connection on E.
DGsetup⁡x,y,z,u,v,w,E
frame name: E
C4≔Connection⁡x⁢z⁢D_v&tdu&tdy
C4:=x⁢z⁢D_v⁢du⁢dy
R4≔CurvatureTensor⁡C4
R4:=z⁢D_v⁢du⁢dx⁢dy−z⁢D_v⁢du⁢dy⁢dx−x⁢D_v⁢du⁢dy⁢dz+x⁢D_v⁢du⁢dz⁢dy
Physics[Riemann], DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], Connection, CovariantDerivative, Physics[D_], SectionalCurvature, RicciScalar, RicciTensor, Physics[Ricci], TorsionTensor, Physics[Weyl]
Download Help Document