Tensor[MultiVector] - compute the alternating sum of the tensor product of a list of vector fields
Calling Sequences
MultiVector(V)
Parameters
V - a list of vector fields
Description
Examples
The bi-vector defined by vector fields X and Y is the rank 2, skew-symmetric, contravariant tensor field T=X⊗Y−Y⊗X. More generally, the multi-vector defined by vector fields X1,X2,...,Xr is the rank r, skew-symmetric contravariant tensor field defined as the alternating sum of the tensor products of X1,X2,...,Xr.
The vector fields X1,X2,...,Xr are linearly dependent if and only if the associated multi-vector vanishes.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form MultiVector(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-MultiVector.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a 4 dimensional manifold M.
DGsetup⁡x1,x2,x3,x4,M:
Calculate the bi-vector of the two vector fields X1 and X2.
X1≔D_x1
X1:=D_x1
X2≔D_x2
X2:=D_x2
MultiVector⁡X1,X2
D_x1⁢D_x2−D_x2⁢D_x1
Example 2.
Calculate the tri-vector of the three vector fields Y1,Y2, and Y3.
Y1≔evalDG⁡D_x1−D_x2
Y1:=D_x1−D_x2
Y2≔evalDG⁡D_x2−D_x3
Y2:=D_x2−D_x3
Y3≔evalDG⁡D_x3−D_x4
Y3:=D_x3−D_x4
MultiVector⁡Y1,Y2,Y3
D_x1⁢D_x2⁢D_x3−D_x1⁢D_x2⁢D_x4−D_x1⁢D_x3⁢D_x2+D_x1⁢D_x3⁢D_x4+D_x1⁢D_x4⁢D_x2−D_x1⁢D_x4⁢D_x3−D_x2⁢D_x1⁢D_x3+D_x2⁢D_x1⁢D_x4+D_x2⁢D_x3⁢D_x1−D_x2⁢D_x3⁢D_x4−D_x2⁢D_x4⁢D_x1+D_x2⁢D_x4⁢D_x3+D_x3⁢D_x1⁢D_x2−D_x3⁢D_x1⁢D_x4−D_x3⁢D_x2⁢D_x1+D_x3⁢D_x2⁢D_x4+D_x3⁢D_x4⁢D_x1−D_x3⁢D_x4⁢D_x2−D_x4⁢D_x1⁢D_x2+D_x4⁢D_x1⁢D_x3+D_x4⁢D_x2⁢D_x1−D_x4⁢D_x2⁢D_x3−D_x4⁢D_x3⁢D_x1+D_x4⁢D_x3⁢D_x2
Example 3.
Use the MultiVector command to determine when a vector field Z lies in the span of the vector fields Y1,Y2,Y3.
Z≔evalDG⁡a⁢D_x1+b⁢D_x2+c⁢D_x3+d⁢D_x4
Z:=a⁢D_x1+b⁢D_x2+c⁢D_x3+d⁢D_x4
T≔MultiVector⁡Z,Y1,Y2,Y3
T:=−c+d+a+b⁢D_x1⁢D_x2⁢D_x3⁢D_x4+c+d+a+b⁢D_x1⁢D_x2⁢D_x4⁢D_x3+c+d+a+b⁢D_x1⁢D_x3⁢D_x2⁢D_x4−c+d+a+b⁢D_x1⁢D_x3⁢D_x4⁢D_x2−c+d+a+b⁢D_x1⁢D_x4⁢D_x2⁢D_x3+c+d+a+b⁢D_x1⁢D_x4⁢D_x3⁢D_x2+c+d+a+b⁢D_x2⁢D_x1⁢D_x3⁢D_x4−c+d+a+b⁢D_x2⁢D_x1⁢D_x4⁢D_x3−c+d+a+b⁢D_x2⁢D_x3⁢D_x1⁢D_x4+c+d+a+b⁢D_x2⁢D_x3⁢D_x4⁢D_x1+c+d+a+b⁢D_x2⁢D_x4⁢D_x1⁢D_x3−c+d+a+b⁢D_x2⁢D_x4⁢D_x3⁢D_x1−c+d+a+b⁢D_x3⁢D_x1⁢D_x2⁢D_x4+c+d+a+b⁢D_x3⁢D_x1⁢D_x4⁢D_x2+c+d+a+b⁢D_x3⁢D_x2⁢D_x1⁢D_x4−c+d+a+b⁢D_x3⁢D_x2⁢D_x4⁢D_x1−c+d+a+b⁢D_x3⁢D_x4⁢D_x1⁢D_x2+c+d+a+b⁢D_x3⁢D_x4⁢D_x2⁢D_x1+c+d+a+b⁢D_x4⁢D_x1⁢D_x2⁢D_x3−c+d+a+b⁢D_x4⁢D_x1⁢D_x3⁢D_x2−c+d+a+b⁢D_x4⁢D_x2⁢D_x1⁢D_x3+c+d+a+b⁢D_x4⁢D_x2⁢D_x3⁢D_x1+c+d+a+b⁢D_x4⁢D_x3⁢D_x1⁢D_x2−c+d+a+b⁢D_x4⁢D_x3⁢D_x2⁢D_x1
Tools:-DGinfo⁡T,CoefficientSet
c+d+a+b,−d−c−b−a
So Z is a linear combination of Y1,Y2,Y3 precisely when a+b+c+d=0.
See Also
DifferentialGeometry
Tensor
SymmetrizeIndices
DGinfo
Download Help Document