MultiVector - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[MultiVector] - compute the alternating sum of the tensor product of a list of vector fields

Calling Sequences

    MultiVector(V)

Parameters

   V     - a list of vector fields

 

Description

Examples

Description

• 

The bi-vector defined by vector fields X and Y is the rank 2, skew-symmetric, contravariant tensor field T=XYYX. More generally, the multi-vector defined by vector fields X1,X2,...,Xr is the rank r, skew-symmetric contravariant tensor field defined as the alternating sum of the tensor products of X1,X2,...,Xr.

• 

The vector fields X1,X2,...,Xr are linearly dependent if and only if the associated multi-vector vanishes.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form MultiVector(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-MultiVector.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a 4 dimensional manifold M.

DGsetupx1,x2,x3,x4,M:

 

Calculate the bi-vector of the two vector fields X1 and X2.

M > 

X1D_x1

X1:=D_x1

(2.1)
M > 

X2D_x2

X2:=D_x2

(2.2)
M > 

MultiVectorX1,X2

D_x1D_x2D_x2D_x1

(2.3)

 

Example 2.

Calculate the tri-vector of the three vector fields Y1,Y2, and Y3.

M > 

Y1evalDGD_x1D_x2

Y1:=D_x1D_x2

(2.4)
M > 

Y2evalDGD_x2D_x3

Y2:=D_x2D_x3

(2.5)
M > 

Y3evalDGD_x3D_x4

Y3:=D_x3D_x4

(2.6)
M > 

MultiVectorY1,Y2,Y3

D_x1D_x2D_x3D_x1D_x2D_x4D_x1D_x3D_x2+D_x1D_x3D_x4+D_x1D_x4D_x2D_x1D_x4D_x3D_x2D_x1D_x3+D_x2D_x1D_x4+D_x2D_x3D_x1D_x2D_x3D_x4D_x2D_x4D_x1+D_x2D_x4D_x3+D_x3D_x1D_x2D_x3D_x1D_x4D_x3D_x2D_x1+D_x3D_x2D_x4+D_x3D_x4D_x1D_x3D_x4D_x2D_x4D_x1D_x2+D_x4D_x1D_x3+D_x4D_x2D_x1D_x4D_x2D_x3D_x4D_x3D_x1+D_x4D_x3D_x2

(2.7)

 

Example 3.

Use the MultiVector command to determine when a vector field Z lies in the span of the vector fields Y1,Y2,Y3.

M > 

ZevalDGaD_x1+bD_x2+cD_x3+dD_x4

Z:=aD_x1+bD_x2+cD_x3+dD_x4

(2.8)
M > 

TMultiVectorZ,Y1,Y2,Y3

T:=c+d+a+bD_x1D_x2D_x3D_x4+c+d+a+bD_x1D_x2D_x4D_x3+c+d+a+bD_x1D_x3D_x2D_x4c+d+a+bD_x1D_x3D_x4D_x2c+d+a+bD_x1D_x4D_x2D_x3+c+d+a+bD_x1D_x4D_x3D_x2+c+d+a+bD_x2D_x1D_x3D_x4c+d+a+bD_x2D_x1D_x4D_x3c+d+a+bD_x2D_x3D_x1D_x4+c+d+a+bD_x2D_x3D_x4D_x1+c+d+a+bD_x2D_x4D_x1D_x3c+d+a+bD_x2D_x4D_x3D_x1c+d+a+bD_x3D_x1D_x2D_x4+c+d+a+bD_x3D_x1D_x4D_x2+c+d+a+bD_x3D_x2D_x1D_x4c+d+a+bD_x3D_x2D_x4D_x1c+d+a+bD_x3D_x4D_x1D_x2+c+d+a+bD_x3D_x4D_x2D_x1+c+d+a+bD_x4D_x1D_x2D_x3c+d+a+bD_x4D_x1D_x3D_x2c+d+a+bD_x4D_x2D_x1D_x3+c+d+a+bD_x4D_x2D_x3D_x1+c+d+a+bD_x4D_x3D_x1D_x2c+d+a+bD_x4D_x3D_x2D_x1

(2.9)
M > 

Tools:-DGinfoT,CoefficientSet

c+d+a+b,dcba

(2.10)

So Z is a linear combination of Y1,Y2,Y3 precisely when a+b+c+d=0.

See Also

DifferentialGeometry

Tensor

SymmetrizeIndices

DGinfo