SchoutenTensor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[SchoutenTensor] - calculate the Schouten tensor of a metric

 

Calling Sequences

     SchoutenTensor(g)

     SchoutenTensor(g, R)

Parameters

     g       - a metric tensor on the tangent bundle of a manifold

     R       - (optional) the curvature tensor of g

 

Description

Examples

Description

• 

Let gab be metric (of any signature) on the tangent bundle of a manifold M of dimensionn>2. Let the Ricci tensor of g be Rab with scalar curvature R=gabRab. The the Schouten tensor Sab of gab is the symmetric tensor

Sab=1n2RabR2n1gab.

 

• 

The first calling sequence computes the curvature tensor, Ricci tensor, and Ricci Scalar directly from the given metric. The second calling sequence uses the given curvature tensor Ra bcd to compute the Ricci tensor via Rbd=Ra bad and then computes the scalar curvature using the given metric via R =gabRab. 

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SchoutenTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-ProjectiveCurvature.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

Calculate the Schouten tensor of a metric.

 

DGsetupx,y,z,P

frame name: P

(2.1)
P > 

gevalDGexpλxdx&tdx+dy&tdy+dz&tdz

g:=ⅇλxdxdx+ⅇλxdydy+ⅇλxdzdz

(2.2)
P > 

SchoutenTensorg

18λ2dxdx18λ2dydy18λ2dzdz

(2.3)

Example 2.

Calculate the Schouten tensor from a metric and curvature tensor.

 

DGsetupx,y,z,P

frame name: P

(2.4)
P > 

gevalDGexpλxdx&tdx+dy&tdy+dz&tdz

g:=ⅇλxdxdx+ⅇλxdydy+ⅇλxdzdz

(2.5)
P > 

RCurvatureTensorg

R:=14λ2D_ydzdydz+14λ2D_ydzdzdy+14λ2D_zdydydz14λ2D_zdydzdy

(2.6)
P > 

SchoutenTensorg,R

18λ2dxdx18λ2dydy18λ2dzdz

(2.7)

See Also

DifferentialGeometry

CurvatureTensor

RicciTensor

RicciScalar