AllHamiltonianGroups - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : AllHamiltonianGroups

GroupTheory

  

HamiltonianGroup

  

construct a finite Hamiltonian group

  

NumHamiltonianGroups

  

find the number of Hamiltonian groups of a given order

  

AllHamiltonianGroups

  

find all Hamiltonian groups of a given order

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

HamiltonianGroup( n, k )

NumHamiltonianGroups( n )

AllHamiltonianGroups( n )

Parameters

n

-

a positive integer

k

-

a positive integer

Options

• 

formopt : option of the form form = "permgroup" or form = "fpgroup"

• 

outopt : option of the form output = "list" or output = "iterator"

Description

• 

A group is Hamiltonian if it is non-Abelian, and if every subgroup is normal. Every Hamiltonian group has the quaternion group as a direct factor, so the order of every finite Hamiltonian group is a multiple of 8.

• 

For a positive integer n, the NumHamiltonianGroups( n ) command returns the number of Hamiltonian groups of order n. (This is 0 if n is not a multiple of 8.)

• 

The HamiltonianGroup( n, k ) command returns the k-th Hamiltonian group of order n. An exception is raised if n is not a multiple of 8.

• 

The AllHamiltonianGroups( n ) command returns an expression sequence of all the Hamiltonian groups of order n, where n is a positive integer. Note that NULL is returned if n is not a multiple of 8.

• 

The HamiltonianGroup and AllHamiltonianGroups commands accept an option of the form form = F, where F may be either of the strings "permgroup" (the default), or "fpgroup".

• 

The AllHamiltonianGroups command accepts an option of the form output = "list" (the default) or output = "iterator". By default, a sequence of the Hamiltonian groups of order n is returned. If you pass the option output = "iterator" to AllHamiltonianGroups, then an iterator object is returned instead.

Examples

withGroupTheory:

There is an unique Hamiltonian group of each 2-power greater than or equal to 8.

seqNumHamiltonianGroups2i,i=1..20

0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

(1)

There are no Hamiltonian groups of order 25.

NumHamiltonianGroups25

0

(2)

NumHamiltonianGroups432

3

(3)

GHamiltonianGroup432,2

G1,2,3,45,6,8,7,1,5,3,82,7,4,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22

(4)

IsHamiltonianG

true

(5)

AllHamiltonianGroups432,form=fpgroup

_x3,_x4,_x5,_x6,_x7,_x8_x52,_x63,_x73,_x83,_x34,_x32_x42,_x3_x4_x3-1_x4,_x5-1_x3-1_x5_x3,_x5-1_x4-1_x5_x4,_x6-1_x3-1_x6_x3,_x6-1_x4-1_x6_x4,_x6-1_x5-1_x6_x5,_x7-1_x3-1_x7_x3,_x7-1_x4-1_x7_x4,_x7-1_x5-1_x7_x5,_x7-1_x6-1_x7_x6,_x8-1_x3-1_x8_x3,_x8-1_x4-1_x8_x4,_x8-1_x5-1_x8_x5,_x8-1_x6-1_x8_x6,_x8-1_x7-1_x8_x7,_x12,_x13,_x14,_x15,_x16_x142,_x153,_x124,_x122_x132,_x12_x13_x12-1_x13,_x14-1_x12-1_x14_x12,_x14-1_x13-1_x14_x13,_x15-1_x12-1_x15_x12,_x15-1_x13-1_x15_x13,_x15-1_x14-1_x15_x14,_x16-1_x12-1_x16_x12,_x16-1_x13-1_x16_x13,_x16-1_x14-1_x16_x14,_x16-1_x15-1_x16_x15,_x169,_x20,_x21,_x22,_x23_x222,_x204,_x202_x212,_x20_x21_x20-1_x21,_x22-1_x20-1_x22_x20,_x22-1_x21-1_x22_x21,_x23-1_x20-1_x23_x20,_x23-1_x21-1_x23_x21,_x23-1_x22-1_x23_x22,_x2327

(6)

itAllHamiltonianGroups194400000,output=iterator

it⟨Hamiltonian Groups Iterator for Order 194400000⟩

(7)

nopsseqit

49

(8)

Compatibility

• 

The GroupTheory[HamiltonianGroup], GroupTheory[NumHamiltonianGroups] and GroupTheory[AllHamiltonianGroups] commands were introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

GroupTheory

GroupTheory[IsHamiltonian]

GroupTheory[NumGroups]