MaximalNormalSubgroups - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : MaximalNormalSubgroups

GroupTheory

  

NormalSubgroups

  

compute the normal subgroups of a finite group

  

MinimalNormalSubgroups

  

compute the minimal normal subgroups of a finite group

  

MaximalNormalSubgroups

  

compute the maximal normal subgroups of a finite group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

NormalSubgroups( G )

MinimalNormalSubgroups( G )

MaximalNormalSubgroups( G )

Parameters

G

-

a finite group

Description

• 

The NormalSubgroups( G ) command computes the normal subgroups of a finite group G.

• 

The group G must be an instance of a permutation group or a Cayley table group.

• 

The MinimalNormalSubgroups( G ) command computes the minimal normal subgroups of a permutation group G. These are the non-trivial normal subgroups of G that properly contain no other non-trivial normal subgroup of G.

• 

The MaximalNormalSubgroups( G ) command computes the maximal normal subgroups of a permutation group G. These subgroups are proper normal subgroups of G contained properly in no other proper normal subgroup of G.

Examples

withGroupTheory:

GAlt4

GA4

(1)

SNormalSubgroupsG

S1,42,3,1,23,4,2,3,4,1,42,3,1,23,4,

(2)

andmapIsNormal,S,G

true

(3)

The alternating group of degree 5 is simple, so it has only two normal subgroups, itself and the trivial subgroup.

GAlt5

GA5

(4)

NormalSubgroupsG

A5,

(5)

GDihedralGroup10

GD10

(6)

LNormalSubgroupsG

L1,62,53,47,108,9,1,34,105,96,8,1,82,73,64,59,10,1,62,53,47,108,9,1,82,73,64,59,10,1,9,7,5,32,10,8,6,4,1,34,105,96,8,1,9,7,5,32,10,8,6,4,1,10,9,8,7,6,5,4,3,2,1,9,7,5,32,10,8,6,4,1,62,73,84,95,10,

(7)

mapGroupOrder,L

20,10,10,10,5,2,1

(8)

mapGroupOrder,MinimalNormalSubgroupsG

2,5

(9)

mapGroupOrder,MaximalNormalSubgroupsG

10,10,10

(10)

Observe that the trivial group has neither maximal nor minimal normal subgroups.

MinimalNormalSubgroups,MaximalNormalSubgroupsTrivialGroup

,

(11)

The only maximal normal subgroup of a simple group is the trivial subgroup.

MaximalNormalSubgroupsSuzuki2B232

(12)

Moreover, the only minimal normal subgroup of a simple group is the entire group itself.

MinimalNormalSubgroupsMcLaughlinGroup

McL

(13)

The automorphism group of the Clebsch graph contains a perfect normal subgroup of index two.

useGraphTheoryinAAutomorphismGroupSpecialGraphs:-ClebschGraphend use

4,135,68,149,11,2,45,1611,1512,14,1,2,5,3,9,11,12,84,14,6,13,15,16,7,10,3,75,146,812,16,2,54,167,98,10

(14)

GroupOrderA

1920

(15)

NANormalSubgroupsA

NA1,3,8,13,112,7,12,16,65,15,14,9,10,1,3,12,6,13,112,7,85,9,1014,15,1,3,14,4,92,7,12,16,56,15,8,11,10,1,3,8,13,112,7,12,16,65,15,14,9,10,1,3,14,4,92,7,12,16,56,15,8,11,10,1,52,63,47,118,159,1210,1413,16,1,62,53,134,167,98,1011,1214,15,1,142,83,114,75,106,159,1612,13,1,162,34,65,137,158,119,1410,12,

(16)

GroupOrderNA2

960

(17)

IsPerfectNA2

true

(18)

IsPrimitiveNA2

true

(19)

Since every subgroup of an abelian group is normal, the following example returns the collection of all subgroups of the group.

LNormalSubgroupsCyclicGroup36

L1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,352,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,1,4,7,10,13,16,19,22,25,28,31,342,5,8,11,14,17,20,23,26,29,32,353,6,9,12,15,18,21,24,27,30,33,36,1,5,9,13,17,21,25,29,332,6,10,14,18,22,26,30,343,7,11,15,19,23,27,31,354,8,12,16,20,24,28,32,36,1,7,13,19,25,312,8,14,20,26,323,9,15,21,27,334,10,16,22,28,345,11,17,23,29,356,12,18,24,30,36,1,10,19,282,11,20,293,12,21,304,13,22,315,14,23,326,15,24,337,16,25,348,17,26,359,18,27,36,1,13,252,14,263,15,274,16,285,17,296,18,307,19,318,20,329,21,3310,22,3411,23,3512,24,36,1,192,203,214,225,236,247,258,269,2710,2811,2912,3013,3114,3215,3316,3417,3518,36,

(20)

LMaximalNormalSubgroupsCyclicGroup100000:

mapGroupOrder,L

50000,20000

(21)

LMinimalNormalSubgroupsCyclicGroup100000:

mapGroupOrder,L

5,2

(22)

GCayleyTableGroupSymm3

G < a Cayley table group with 6 elements >

(23)

NormalSubgroupsG

< a Cayley table group with 1 element > &comma; < a Cayley table group with 3 elements > &comma; < a Cayley table group with 6 elements >

(24)

Compatibility

• 

The GroupTheory[NormalSubgroups] command was introduced in Maple 2016.

• 

For more information on Maple 2016 changes, see Updates in Maple 2016.

See Also

GroupTheory

GroupTheory[IsNormal]