GroupTheory
NormalSubgroups
compute the normal subgroups of a finite group
MinimalNormalSubgroups
compute the minimal normal subgroups of a finite group
MaximalNormalSubgroups
compute the maximal normal subgroups of a finite group
Calling Sequence
Parameters
Description
Examples
Compatibility
NormalSubgroups( G )
MinimalNormalSubgroups( G )
MaximalNormalSubgroups( G )
G
-
a finite group
The NormalSubgroups( G ) command computes the normal subgroups of a finite group G.
The group G must be an instance of a permutation group or a Cayley table group.
The MinimalNormalSubgroups( G ) command computes the minimal normal subgroups of a permutation group G. These are the non-trivial normal subgroups of G that properly contain no other non-trivial normal subgroup of G.
The MaximalNormalSubgroups( G ) command computes the maximal normal subgroups of a permutation group G. These subgroups are proper normal subgroups of G contained properly in no other proper normal subgroup of G.
with⁡GroupTheory:
G≔Alt⁡4
G≔A4
S≔NormalSubgroups⁡G
S≔1,42,3,1,23,4,2,3,4,1,42,3,1,23,4,
andmap⁡IsNormal,S,G
true
The alternating group of degree 5 is simple, so it has only two normal subgroups, itself and the trivial subgroup.
G≔Alt⁡5
G≔A5
NormalSubgroups⁡G
A5,
G≔DihedralGroup⁡10
G≔D10
L≔NormalSubgroups⁡G
L≔1,62,53,47,108,9,1,34,105,96,8,1,82,73,64,59,10,1,62,53,47,108,9,1,82,73,64,59,10,1,9,7,5,32,10,8,6,4,1,34,105,96,8,1,9,7,5,32,10,8,6,4,1,10,9,8,7,6,5,4,3,2,1,9,7,5,32,10,8,6,4,1,62,73,84,95,10,
map⁡GroupOrder,L
20,10,10,10,5,2,1
map⁡GroupOrder,MinimalNormalSubgroups⁡G
2,5
map⁡GroupOrder,MaximalNormalSubgroups⁡G
10,10,10
Observe that the trivial group has neither maximal nor minimal normal subgroups.
MinimalNormalSubgroups,MaximalNormalSubgroups⁡TrivialGroup⁡
,
The only maximal normal subgroup of a simple group is the trivial subgroup.
MaximalNormalSubgroups⁡Suzuki2B2⁡32
Moreover, the only minimal normal subgroup of a simple group is the entire group itself.
MinimalNormalSubgroups⁡McLaughlinGroup⁡
McL
The automorphism group of the Clebsch graph contains a perfect normal subgroup of index two.
useGraphTheoryinA ≔ AutomorphismGroup⁡SpecialGraphs:-ClebschGraph⁡end use
4,135,68,149,11,2,45,1611,1512,14,1,2,5,3,9,11,12,84,14,6,13,15,16,7,10,3,75,146,812,16,2,54,167,98,10
GroupOrder⁡A
1920
NA≔NormalSubgroups⁡A
NA≔1,3,8,13,112,7,12,16,65,15,14,9,10,1,3,12,6,13,112,7,85,9,1014,15,1,3,14,4,92,7,12,16,56,15,8,11,10,1,3,8,13,112,7,12,16,65,15,14,9,10,1,3,14,4,92,7,12,16,56,15,8,11,10,1,52,63,47,118,159,1210,1413,16,1,62,53,134,167,98,1011,1214,15,1,142,83,114,75,106,159,1612,13,1,162,34,65,137,158,119,1410,12,
GroupOrder⁡NA2
960
IsPerfect⁡NA2
IsPrimitive⁡NA2
Since every subgroup of an abelian group is normal, the following example returns the collection of all subgroups of the group.
L≔NormalSubgroups⁡CyclicGroup⁡36
L≔1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,352,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,1,4,7,10,13,16,19,22,25,28,31,342,5,8,11,14,17,20,23,26,29,32,353,6,9,12,15,18,21,24,27,30,33,36,1,5,9,13,17,21,25,29,332,6,10,14,18,22,26,30,343,7,11,15,19,23,27,31,354,8,12,16,20,24,28,32,36,1,7,13,19,25,312,8,14,20,26,323,9,15,21,27,334,10,16,22,28,345,11,17,23,29,356,12,18,24,30,36,1,10,19,282,11,20,293,12,21,304,13,22,315,14,23,326,15,24,337,16,25,348,17,26,359,18,27,36,1,13,252,14,263,15,274,16,285,17,296,18,307,19,318,20,329,21,3310,22,3411,23,3512,24,36,1,192,203,214,225,236,247,258,269,2710,2811,2912,3013,3114,3215,3316,3417,3518,36,
L≔MaximalNormalSubgroups⁡CyclicGroup⁡100000:
50000,20000
L≔MinimalNormalSubgroups⁡CyclicGroup⁡100000:
5,2
G≔CayleyTableGroup⁡Symm⁡3
G≔ < a Cayley table group with 6 elements >
< a Cayley table group with 1 element > , < a Cayley table group with 3 elements > , < a Cayley table group with 6 elements >
The GroupTheory[NormalSubgroups] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
GroupTheory[IsNormal]
Download Help Document