IsInvariant
check if one LAVF is invariant under action of another LAVF
Calling Sequence
Parameters
Description
Examples
Compatibility
IsInvariant( L1, L2)
L1, L2
-
LAVF objects.
Let L1, L2 be LAVF objects on the same space. Then IsInvariant(L1,L2) checks if L1 is invariant under action of L2 (i.e. if L1,L2⊆L1).
The call IsInvariant(L1, L2) is equivalent to the call AreCommuting(L1,L2,L1). See AreCommuting for more detail.
This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y:
V≔VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy,space=x,y
V≔ξ⁢ⅆⅆx+η⁢ⅆⅆy
T2≔LHPDE⁡diff⁡ξ⁡x,y,x=0,diff⁡ξ⁡x,y,y=0,diff⁡η⁡x,y,x=0,diff⁡η⁡x,y,y=0,indep=x,y,dep=ξ,η
T2≔ξx=0,ξy=0,ηx=0,ηy=0,indep=x,y,dep=ξ,η
E2≔LHPDE⁡diff⁡ξ⁡x,y,y,y=0,diff⁡η⁡x,y,x=−diff⁡ξ⁡x,y,y,diff⁡η⁡x,y,y=0,diff⁡ξ⁡x,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
Construct LAVFs for 2-dim Euclidean group E(2) and 2-dim translation group T(2).
LE2≔LAVF⁡V,E2
LE2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
LT2≔LAVF⁡V,T2
LT2≔ξ⁢ⅆⅆx+η⁢ⅆⅆy&whereξx=0,ηx=0,ξy=0,ηy=0
Both LAVFs are Lie algebras.
IsLieAlgebra⁡LE2
true
IsLieAlgebra⁡LT2
LT2 is invariant under the action of LE2.
IsInvariant⁡LT2,LE2
The IsInvariant command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
Download Help Document