3-D Coordinate Systems
Main Concept
The Cartesian coordinate system is the default 3-D coordinate system used by Maple.
Additionally, Maple supports the following 3-D coordinate systems:
bipolarcylindrical
bispherical
cardioidal
cardioidcylindrical
casscylindrical
confocalellip
confocalparab
conical
cylindrical
ellcylindrical
ellipsoidal
hypercylindrical
invcasscylindrical
invellcylindrical
invoblspheroidal
invprospheroidal
logcoshcylindrical
logcylindrical
maxwellcylindrical
oblatespheroidal
paraboloidal
paraboloidal2
paracylindrical
prolatespheroidal
rectangular
rosecylindrical
sixsphere
spherical
tangentcylindrical
tangentsphere
toroidal
Conversions
The conversions from the various coordinate systems to cartesian coordinates in three dimensions
u,v,w→x,y,z
are given as follows:
bipolarcylindrical (Spiegel)
x=a⁢sinh⁡vcosh⁡v−cos⁡u
y=a⁢sin⁡ucosh⁡v−cos⁡u
z=w
x=sin⁡u⁢cos⁡wd
y=sin⁡u⁢sin⁡wd
z=sinh⁡vd where d=cosh⁡v−cos⁡u
x=u⁢v⁢cos⁡wu2+v22
y=u⁢v⁢sin⁡wu2+v22
z=u2−v22⁢u2+v22
x=u2−v22⁢u2+v22
y=u⁢vu2+v22
casscylindrical (Cassinian-oval cylinder)
x=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1+ⅇu⁢cos⁡v+12
y=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1−ⅇu⁢cos⁡v−12
confocalellip (confocal elliptic)
x=a2−u⁢a2−v⁢a2−wa2−b2⁢a2−c2
y=b2−u⁢b2−v⁢b2−w−a2+b2⁢b2−c2
z=c2−u⁢c2−v⁢c2−w−a2+c2⁢−b2+c2
confocalparab (confocal parabolic)
x=a2−u⁢a2−v⁢a2−w−a2+b2
y=b2−u⁢b2−v⁢b2−w−a2+b2
z=a22+b22−u2−v2−w2
x=u⁢v⁢wa⁢b
y=u⁢−b2+v2⁢b2−w2a2−b2b
z=u⁢a2−v2⁢a2−w2a2−b2a
x=u⁢cos⁡v
y=u⁢sin⁡v
ellcylindrical (elliptic cylindrical)
x=a⁢cosh⁡u⁢cos⁡v
y=a⁢sinh⁡u⁢sin⁡v
y=−b2+u2⁢−b2+v2⁢b2−w2a2−b2b
z=−a2+u2⁢a2−v2⁢a2−w2a2−b2a
hypercylindrical (hyperbolic cylinder)
x=u2+v2+u
y=u2+v2−u
invcasscylindrical (inverse Cassinian-oval cylinder)
x=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1+ⅇu⁢cos⁡v+12⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1
y=a⁢2⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1−ⅇu⁢cos⁡v−12⁢ⅇ2⁢u+2⁢ⅇu⁢cos⁡v+1
invellcylindrical (inverse elliptic cylinder)
x=a⁢cosh⁡u⁢cos⁡vcosh⁡u2−sin⁡v2
y=a⁢sinh⁡u⁢sin⁡vcosh⁡u2−sin⁡v2
invoblspheroidal (inverse oblate spheroidal)
x=a⁢cosh⁡u⁢sin⁡v⁢cos⁡wcosh⁡u2−cos⁡v2
y=a⁢cosh⁡u⁢sin⁡v⁢sin⁡wcosh⁡u2−cos⁡v2
z=a⁢sinh⁡u⁢cos⁡vcosh⁡u2−cos⁡v2
invprospheroidal (inverse prolate spheroidal)
x=a⁢sinh⁡u⁢sin⁡v⁢cos⁡wcosh⁡u2−sin⁡v2
y=a⁢sinh⁡u⁢sin⁡v⁢sin⁡wcosh⁡u2−sin⁡v2
z=a⁢cosh⁡u⁢cos⁡vcosh⁡u2−sin⁡v2
logcylindrical (logarithmic cylinder)
x=a⁢ln⁡u2+v2π
y=2⁢a⁢arctan⁡vuπ
logcoshcylindrical (ln cosh cylinder)
x=a⁢ln⁡cosh⁡u2−sin⁡v2π
y=2⁢a⁢arctan⁡tanh⁡u⁢tan⁡vπ
x=a⁢u+1+ⅇu⁢cos⁡vπ
y=a⁢v+ⅇu⁢sin⁡vπ
x=a⁢cosh⁡u⁢sin⁡v⁢cos⁡w
y=a⁢cosh⁡u⁢sin⁡v⁢sin⁡w
z=a⁢sinh⁡u⁢cos⁡v
paraboloidal (Spiegel)
x=u⁢v⁢cos⁡w
y=u⁢v⁢sin⁡w
z=u22−v22
paraboloidal2 (Moon)
x=2⁢u−a⁢a−v⁢a−wa−b
y=2⁢u−b⁢b−v⁢b−wa−b
z=u+v+w−a−b
x=u22−v22
y=u⁢v
x=a⁢sinh⁡u⁢sin⁡v⁢cos⁡w
y=a⁢sinh⁡u⁢sin⁡v⁢sin⁡w
z=a⁢cosh⁡u⁢cos⁡v
x=u
y=v
x=u2+v2+uu2+v2
y=u2+v2−uu2+v2
sixsphere (6-sphere)
x=uu2+v2+w2
y=vu2+v2+w2
z=wu2+v2+w2
x=u⁢cos⁡v⁢sin⁡w
y=u⁢sin⁡v⁢sin⁡w
z=u⁢cos⁡w
x=uu2+v2
y=vu2+v2
x=u⁢cos⁡wu2+v2
y=u⁢sin⁡wu2+v2
z=vu2+v2
x=a⁢sinh⁡v⁢cos⁡wd
y=a⁢sinh⁡v⁢sin⁡wd
z=a⁢sin⁡ud where d=cosh⁡v−cos⁡u
Instructions: Adjust the sliders to see how the surface depends on each parameter.
Coordinate System:bipolarcylindricalbisphericalcardioidalcardioidcylindricalcasscylindricalconfocalellipconfocalparabconicalcylindricalellcylindricalellipsoidalhypercylindricalinvcasscylindricalinvellcylindricalinvoblspheroidalinvprospheroidallogcoshcylindricallogcylindricalmaxwellcylindricaloblatespheroidalparaboloidalparaboloidal2paracylindricalprolatespheroidalrectangularrosecylindricalsixspheresphericaltangentcylindricaltangentspheretoroidal
More MathApps
MathApps/Graphing
Download Help Document