OreTools[Utility]
Coefficient
return the coefficient of a specific power in an Ore polynomial
Coefficients
return the coefficient sequence of an Ore polynomial
Degree
return the degree of an Ore polynomial with respect to the noncommutative indeterminate
LeadingCoefficient
return the leading coefficient of an Ore polynomial
LowDegree
return the degree of the least power with nonzero coefficient
RandOrePoly
return a random Ore polynomial
TrailingCoefficient
return the trailing coefficient of an Ore Polynomial
VariableDegree
return the maximal degree of the coefficients of an Ore Polynomial in the variable in an Ore algebra
Calling Sequence
Parameters
Description
Examples
Coefficient(Poly, n)
Coefficients(Poly)
Degree(Poly)
LeadingCoefficient(Poly)
LowDegree(Poly)
RandOrePoly(A, opts)
TrailingCoefficient(Poly)
VariableDegree(Poly, A)
Poly
-
Ore polynomial; to define an Ore polynomial, see OreTools/OrePoly
n
non-negative integer
A
Ore algebra
opts
options
The Coefficient(Poly, n) calling sequence returns the coefficient of the nth power of the noncommutative indeterminate in Poly.
The Coefficients(Poly) calling sequence returns the sequence of coefficients of Poly.
The Degree(Poly) calling sequence returns the degree of Poly with respect to the noncommutative indeterminate.
The LeadingCoefficient(Poly)] calling sequence returns the leading coefficient of Poly.
The LowDegree(Poly) calling sequence returns the trailing degree of Poly.
The RandOrePoly(A) calling sequence returns a random Ore polynomial in the Ore algebra A.
The first argument A specifies the ring in which the polynomial is to be generated. The possible options are:
coeffs - Generate the coefficients
terms - Number of terms in the noncommutative indeterminate
degree - Degree on the noncommutative indeterminate
The TrailingCoefficient(Poly) calling sequence returns the trailing coefficient of A.
The VariableDegree(Poly, A) calling sequence returns the maximal degree of coefficients of Poly with respect to the variable in A. Note that the coefficients of Poly are supposed to be polynomials in the variable.
For a brief review of pseudo-linear algebra (also known as Ore algebra), see OreAlgebra.
with⁡OreTools:
with⁡OreToolsUtility:
Poly≔OrePoly⁡0,2⁢n−1,0,1n
Coefficient⁡Poly,1
2⁢n−1
Coefficient⁡Poly,6
0
Coefficients⁡Poly
0,2⁢n−1,0,1n
Degree⁡Poly
3
Degree⁡OrePoly⁡0
−∞
LeadingCoefficient⁡Poly
1n
LowDegree⁡Poly
1
LowDegree⁡OrePoly⁡0
∞
TrailingCoefficient⁡Poly
TrailingCoefficient⁡OrePoly⁡0
A≔SetOreRing⁡n,shift:
Poly≔RandOrePoly⁡A
Poly≔OrePoly⁡72⁢n5+37⁢n4−23⁢n3+87⁢n2+44⁢n+29,−50⁢n5+23⁢n4+75⁢n3−92⁢n2+6⁢n+74,−17⁢n5−75⁢n4−10⁢n3−7⁢n2−40⁢n+42,−10⁢n5+62⁢n4−82⁢n3+80⁢n2−44⁢n+71,−62⁢n4+97⁢n3−73⁢n2−4⁢n−83,−7⁢n5+22⁢n4−55⁢n3−94⁢n2+87⁢n−56
5
VariableDegree⁡Poly,A
VariableDegree⁡OrePoly⁡0,A
B≔SetOreRing⁡x,differential:
C≔RandOrePoly⁡B,coeffs=polynom⁡degree=3,terms=2,terms=2,degree=10
C≔OrePoly⁡0,0,0,0,40⁢x3−81⁢x,11+95⁢x
VariableDegree⁡C,B
F≔SetOreRing⁡x,q,qshift:
RandOrePoly⁡F,coeffs=ratpoly⁡degnum=1,degden=2,terms=2,degree=5,terms=3,degree=10
OrePoly⁡0,−87⁢q+47⁢x−90−88−48⁢q,0,16⁢q+30⁢x−2772⁢q⁢x−96,0,0,0,0,−51⁢q+77⁢x+95−28⁢q⁢x+55⁢q
See Also
OreTools
OreTools/OreAlgebra
OreTools/SetOreRing
randpoly
Download Help Document