l_ - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Physics[Tetrads][l_] - represent the 1st null vector of the Newman-Penrose formalism

Physics[Tetrads][n_] - represent the 2nd null vector of the Newman-Penrose formalism, i.e. n_[mu] l_[mu] = 1

Physics[Tetrads][m_] - represent the 3rd null vector of the Newman-Penrose formalism, i.e. m_[mu] n_[mu] = 0, m_[mu] l_[mu] = 0

Physics[Tetrads][mb_] - represent the 4th null vector of the Newman-Penrose formalism, i.e. mb_ = conjugate(m_) and mb_[mu] m_[mu] = -1, mb_[mu] n_[mu] = 0, mb_[mu] l_[mu] = 0

Calling Sequence

l_[mu]

n_[mu]

m_[mu]

mb_[mu]

l_[a, matrix]

l_[keyword]

Parameters

_mu

-

the spacetime indices related to a global system of references, these are names representing integer numbers between 0 and the spacetime dimension, they can also be the numbers themselves

_a_

-

a tetrad indices related to a local system of references, as names representing integer numbers the same way as the spacetime indices

keyword

-

optional, it can be definition, matrix, nonzero

Examples

withPhysics:withTetrads

_______________________________________________________

Setting lowercaselatin_ah letters to represent tetrad indices

Defined as tetrad tensors see ?Physics,tetrads, 𝔢a,μ , ηa,b , γa,b,c , λa,b,c

Defined as spacetime tensors representing the NP null vectors of the tetrad formalism see ?Physics,tetrads, lμ , nμ , mμ , m&conjugate0;μ

_______________________________________________________

IsTetrad,NullTetrad,OrthonormalTetrad,PetrovType,SegreType,TransformTetrad,WeylScalars,e_,eta_,gamma_,l_,lambda_,m_,mb_,n_

(1)

Setupmathematicalnotation=true

mathematicalnotation=true

(2)

See Also

d_, D_, e_, eta_, g_, gamma_, IsTetrad, lambda_, NullTetrad, OrthonormalTetrad, Physics, Physics conventions, Physics examples, Physics Updates, Tensors - a complete guide, Mini-Course Computer Algebra for Physicists, Tetrads, TransformTetrad

References

Textbooks

  

Landau, L.D., and Lifshitz, E.M. The Classical Theory of Fields, Course of Theoretical Physics Volume 2, fourth revised English edition. Elsevier, 1975.

  

Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. Herlt, E.  Exact Solutions of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics, second edition. Cambridge University Press, 2003.