Chapter 2: Differentiation
Section 2.7: Derivatives of the Trig Functions
Example 2.7.2
Evaluate ⅆⅆu cosusin2 u2.
Solution
Control-drag the differentiation problem.
Context Panel: Evaluate and Display Inline
Context Panel: Simplify≻Simplify
ⅆⅆu cosusin2 u2 = −2⁢cos⁡u⁢sin⁡usin⁡2⁢u2−4⁢cos⁡u2⁢cos⁡2⁢usin⁡2⁢u3= simplify −12⁢cos⁡usin⁡u3
Table 2.7.2(a) contains a first stepwise solution in which the Chain rule is initially applied, followed by the Quotient rule. In applying the Quotient rule, the Chain rule must again be invoked.
ddu (cos⁡(u)sin⁡(2⁢u))2
=2⁢cos⁡(u)⁢(ⅆⅆu⁢(cos⁡(u)sin⁡(2⁢u)))sin⁡(2⁢u)
=2⁢cos⁡(u)sin⁡(2⁢u) sin⁡(2⁢u)⁢(ⅆⅆu⁢cos⁡(u))−cos⁡(u)⁢(ⅆⅆu⁢sin⁡(2⁢u))sin⁡(2⁢u)2
=2⁢cos⁡(u)sin⁡(2⁢u)⁡(sin⁡(2⁢u)⁢−sin⁡(u)−cos⁡(u)⁢2⁢cos⁡(2⁢u)sin⁡(2⁢u)2)
=−2⁢cos⁡(u)⁢(sin⁡(2⁢u)⁢sin⁡(u)+2⁢cos⁡(u)⁢cos⁡(2⁢u))sin⁡(2⁢u)3
Table 2.7.2(a) First solution for the evaluation of ddu cosusin2 u2
Table 2.7.2(b) applies the double-angle formulae
sin⁡(2⁢u)=2⁢sin⁡(u)⁢cos⁡(u) and cos⁡(2⁢u)=cos2⁢u−sin2⁢u
to further simplify the result in Table 2.7.2(a).
=−2⁢cos⁡(u)⁢(2⁢sin⁡(u)⁢cos⁡(u)⁢sin⁡(u)+2⁢cos⁡(u)⁢(cos2⁢u−sin2⁢u))sin⁡(2⁢u)3
=−4⁢cos2⁢u⁢(sin2⁢u+cos2⁢u−sin2⁢u)sin3⁡(2⁢u)
=−4⁢cos2⁢u⁢cos2⁢usin3⁡(2⁢u)
=−4⁢cos4⁢usin3⁡(2⁢u)
= −4 cos4u2 sinucosu2
= −4 cos4u8 sin3ucos3u
= −cosu2 sin3u
= −12 1sin2u cosusinu
= −12 cosusin3u
Table 2.7.2(b) Further simplifications of the derivative in Table 2.6.13
An alternative approach is to begin by first applying the double-angle formula for the sine function. This form of the calculation appears in Table 2.7.2(c).
ddu cos⁡usin⁡2⁢u2
=ddu cos⁡u2⁢sin⁡u⁢cos⁡u2
= ddu 12⁢sin⁡u2
= ddu sin⁡u)−24
= ddu csc2u4
=24 cscu−cscu cotu
= −12 csc2u cotu
Table 2.7.2(c) Differentiation after first applying a trig simplification
<< Previous Example Section 2.7 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document