Chapter 5: Applications of Integration
Section 5.3: Volume by Slicing
Example 5.3.1
By the method of slicing, obtain the volume of a wedge cut from a cylinder of radius r.
In particular, let the axis of symmetry for the cylinder lie along the z-axis, the bottom face of the wedge in the plane z=0, and the slanted face of the wedge in the plane that passes through the origin and that makes an angle α with the horizontal.
Solution
Mathematical Solution
The red (right) triangle in Figure 5.3.1(a) is one slice in the wedge cut from the cylinder. The horizontal leg has length x; the vertical, h.
The hypotenuse of the yellow (right) triangle has length r; the lengths of the legs are y and x.
From the yellow triangle, x2=r2−y2.
From the red triangle,
tanα=hx⇒h=x tanα
The area of the red triangle is A, given by
use DocumentTools, plots, plottools in
module()
local p1,p2,p3,p4,p5,p6,p7,p8,p9,p10;
p1 := display(polygon([[0,.5,0],[sqrt(3)/2,.5,0],[sqrt(3)/2,.5,.5]],color=red),transparency=.5):
p2 := spacecurve([[0,0,0],[sqrt(3)/2,.5,0]],color=black,thickness=2):
p3 := textplot3d([.5,.2,0,typeset(r)]):
p4 := textplot3d([.35,.2,.15,typeset(x)]):
p5 := textplot3d([.95,.5,.2,typeset(h)]):
p6 := textplot3d([.13,.48,.05,typeset(alpha)]):
p7 := display(polygon([[0,0,0],[0,.5,0],[sqrt(3)/2,.5,0]],color=yellow),transparency=.7):
p8 := textplot3d([.07,.3,0,typeset(y)]):
p9 := spacecurve([[0,0,0],[0,.5,0]],color=black,thickness=3):
p10 := display([p1,p2,p3,p4,p5,p6,p7,p8,p9],axes=frame,orientation=[-105,75],labels=[x,y,z],tickmarks=[[0],0,0],view=[0..1,0..1,0..0.5],scaling=constrained);
print(p10);
end module;
end use:
Figure 5.3.1(a) One slice in the wedge
A
=12 x h
=12 xx tanα
=12 x2 tanα
=12 r2−y2 tanα
Hence, the volume of the wedge is given by
V=tanα2∫−rrr2−y2 ⅆy=23⁢tan⁡α⁢r3
use plots, plottools in
local q,q1,q2,q3,q4,qq;
q := proc(y) display(polygon([[0,y,0],[sqrt(1-y^2),y,0],[sqrt(1-y^2),y,sqrt(1-y^2)/sqrt(3)]],color=red)): end proc:
q1 := spacecurve([cos(t),sin(t),0],t=-Pi/2..Pi/2,color=black):
q2 := spacecurve([0,t,0],t=-1..1,color=black,thickness=3):
q3 := spacecurve([sqrt(1-y^2),y,sqrt(1-y^2)/sqrt(3)],y=-1..1,color=black):
qq := display([q1,q2,q3]):
q4 := animate(q,[y],y=-1..1,axes=box, frames=51, background=qq, scaling=constrained, labels=[x,y,z],view=0..1,orientation=[-140,65],paraminfo=false,tickmarks=[0,[0],0]);
print(q4);
end module:
Figure 5.3.1(b) Animation of slices
Figure 5.3.1(b) animates the slices within the wedge.
Maple Solution
Expression palette: Definite-integral template
Context Panel: Evaluate and Display Inline
tanα2∫−rrr2−y2 ⅆy = 23⁢tan⁡α⁢r3
<< Previous Section Section 5.3 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document